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In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion
imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this
manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving
the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the
appropriate gradient terms and employ gradient descent to find theminimizer of this least-squares optimization
problem. In addition, we show how to perform statistical testing for determining the significance of the
relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both
synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic
regression of ODFs in normal adults aged 22 years old and above.

© 2013 Elsevier Inc. All rights reserved.

Introduction

High angular resolution diffusion imaging (HARDI) is a recent
advanced magnetic resonance imaging (MRI) technique that allows us
to visualize the three-dimensional architecture of neural fiber pathways
in the human brain. It measures diffusion along n uniformly distributed
directions on the sphere and can characterize more complex neural
fiber geometries when compared to diffusion tensor imaging (DTI).
One way to characterize diffusion in the brain white matter based on
the HARDI signals is Q-ball imaging, which uses the Funk–Radon
transform to reconstruct an orientation distribution function (ODF).
The model-free ODF is the angular profile of the diffusion probability
density function of water molecules (Aganj et al., 2010b; Descoteaux
et al., 2007; Frank, 2002; Goh et al., 2009; Hess et al., 2006; Özarslan
and Mareci, 2003). By quantitatively comparing fiber orientations re-
trieved from ODFs against histological measurements, Leergaard et al.
(2010) show that accurate fiber estimates can be obtained from HARDI
data. However, HARDI is not widely used by clinicians and neuroscien-
tists partially due to its relatively long acquisition time. Moreover,
there is a lack of fundamental statistical tools that can fully utilize the in-
formation of complex neuralfiber orientations characterized by the ODF.

There has been great emphasis on deriving scalar-based metrics
from ODFs so that fundamental statistical tools, such as linear

regression, can be easily employed. One of the earliest scalar measures
is the generalized fractional anisotropy (GFA) proposed by Tuch
(2004). GFA is defined as the ratio of standard deviation of the ODF to
its root mean square. Similar to fractional anisotropy (FA) derived
from DTI, GFA takes a value between zero and one and describes the
degree of anisotropy of a diffusion process. GFA has thus far been used
in studies on subcortical ischemic stroke (Tang et al., 2010), impulsivity
(Liu et al., 2010), and genetic influence on the brain white matter
(Chiang et al., 2008a, 2008b), yielding promising results. In addition
to GFA, other scalar measures have also been proposed. Rao et al.
(2012) propose a scalarmeasure known as peak geodesic concentration
(GC), which is defined as the concentration relative to the peak fiber
orientation identified from ODF and thus reflects the degree of
directionally coherent diffusion. Rao et al. (2012) claim that GC is
sensitive to the presence of single or multiple fiber populations within
a voxel and therefore, is a unique scalar measure that can be used
for the evaluation of pathology. Ghosh and Deriche (2011) use a
polynomial approach to extract geometric characteristics from
ODFs and define peak fractional anisotropy (PFA) and total-PFA at
the fiber orientation with the extrema and principal curvatures.
Finally, Assemlal et al. (2011) propose and compute the apparent
intravoxel fiber population dispersion (FPD). It conveys the manner
in which distinct fiber populations are partitioned within the same
voxel and is more effective in revealing regions with crossing tracts
than FA. Despite the ease of statistical analysis on the aforementioned
scalar measures, they discard the complete information that is
inherent in ODF and is of interest in detecting underlying axonal
organization.
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Recently, multivariate statistical analysis has been directly applied
to ODFs (e.g. Cheng et al., 2009; Goh et al., 2011; Lepore et al., 2010).
For example, Lepore et al. (2010) perform a multivariate group-wise
genetic analysis of white matter integrity by adapting the multivariate
intraclass correlation value (ICC) to ODFs. The ICC is obtained from the
coefficients of the spherical harmonics of ODFs at each voxel. Lepore
et al. (2010) show that the ICC increases the detection power in finding
genetic influence on the white matter architecture when compared to
statistics derived from GFA. Instead of working with ODFs in the
Euclidean space, several recent works have proposed a Riemannian
framework for analyzing ODFs. Goh et al. (2011) use the square-root
representation for the ODF Riemannian manifold. Under this represen-
tation, Riemannian operations, such as the geodesics, exponential and
logarithmmaps, are available in closed form. Goh et al. (2011) develop
principal geodesic analysis on tangent vectors of ODFs on the manifold
and generalize the Hotelling's T-squared statistic for the comparison of
ODFs between two populations. Cheng et al. (2009) approximate the
square root of the ODF as a linear combination of orthonormal basis
functions. Since the coefficients of this expansion live in a finite-
dimensional sphere, processing operations can be performed in the
space of coefficients with reduced computational complexity.

Since the Riemannian framework facilitates the utilization of the full
information of ODFs, the natural question is whether fundamental
statistical tools, such as regression, can be adapted from the Euclidean
space to the manifold setting. Regression analysis is a fundamental
statistical tool to determine how a measured variable is related to one
or more independent variables. The most widely used regression
model is linear regression because of its simplicity, ease of interpreta-
tion, and ability to model many phenomena. However, if the response
variable takes values in a nonlinearmanifold, a linearmodel is not appli-
cable. Such manifold-valued measurements arise in many applications,
including those that involve directional data, transformations, tensors,
and shapes and in our case, ODFs.

Indeed, researchers have recently paid great attention to the regres-
sion problem onmanifolds (e.g. Davis et al., 2010; Fletcher, 2011, 2012;
Hinkle et al., 2012). Hinkle et al. (2012) develop the theory of paramet-
ric polynomial regression in Riemannian manifolds and Lie groups and
show the application of Riemannian polynomial regression to shape
analysis in Kendall shape space. Davis et al. (2010) study regression
analysis on the group of diffeomorphisms for detecting longitudinal
anatomical shape changes. Fletcher (2012) develops a generalization
of linear regression to manifolds. More precisely, Fletcher (2012)
proposes a regression method that models the relationship between a
manifold-valued random variable and real-valued independent vari-
ables using a geodesic curve.

In this paper, we adapt the framework of geodesic regression,
proposed in Fletcher (2012), to the HARDI data. To this end, we derive
the algorithm for the geodesic regression on the Riemannian manifold
of ODFs. Similar to Fletcher (2012), we define a least-squares problem
that minimizes the sum-of-squared geodesic distances between
observed ODFs and their model fitted data in order to find the optimal
regression model. We derive the appropriate gradient terms later in
this paper and use the gradient descent to seek the minimizer of this
least-squares problem. In addition, we show how to perform statistical
testing for determining the significance of the relationship between the
manifold-valued regressors and the real-valued regressands. We apply
the ODF regression algorithm and statistical testing to synthetic and real
humandata.We examine aging effects onbrainwhitematter via geodesic
regression of ODFs in normal adults aged 22 years old and above.

Methods

Geodesic regression for the ODF

In statistics, the simple linear regression is an approach to modeling
the relationship between a scalar dependent variable Y and a non-

random scalar variable denoted as X. A linear regression model of this
relationship can be given as

Y ¼ β0 þ β1X þ �; ð1Þ

where β0 is an unknown intercept parameter, β1 is an unknown slope
parameter, and � is an unknown random variable representing the
error drawn from distributions with zero mean and finite variance.
Given n observations, i.e., xi, yi, for i = 1, 2…,n, the least square
estimates, β̂0 and β̂1 , for the intercept and slope can be computed by
minimizing the square errors

β̂0; β̂1

� �
¼ arg min

β̂0 ;β̂1ð Þ
Xn
i¼1

yi−β0−β1xik k
2

: ð2Þ

This minimization problem can be analytically solved. The observa-
tions, yi can be approximated as

ŷi ¼ β̂0 þ β̂1xi; i ¼ 1;2;…;n:

We will now extend the above simple linear regression to the one
modeling the relationship of the ODF and one non-random scalar
variable, X, by adopting the general framework of geodesic regression
in Fletcher, 2011, 2012.

ODF manifold
From existing literature (Aganj et al., 2010b; Descoteaux et al., 2007;

Tuch, 2002), we know that at a specific spatial location, x ∈ Ω, HARDI
measurements can be used to reconstruct the ODF, the diffusion angular
profile of water molecules. The ODF is actually a probability density
function defined on a unit sphere S2 and is denoted as p sð Þ; s∈ S2 . In
our study, we choose the square-root representation, which was used
recently in ODF processing, registration and atlas generation (Cheng
et al., 2009; Du et al., 2012, submitted for publication; Goh et al.,

2011). The square-root ODF
ffiffiffiffiffiffiffiffiffiffi
ODF

p� �
is defined as ψ sð Þ ¼ ffiffiffiffiffiffiffiffiffi

p sð Þp
,

where ψ(s) is assumed to be non-negative to ensure uniqueness. The
space of such functions is defined as

Ψ¼ ψ : S2→Rþ∀s∈ S2;ψ sð Þ≥0; ∫
s∈S2ψ

2 sð Þds ¼ 1
n o

:

From information geometry (Amari, 1985), the functions ψ lies on
the positive orthant of a unit Hilbert sphere, a well-studied Riemannian
manifold. It can be shown (Srivastava et al., 2007) that the Fisher–Rao
metric is simply the L2 metric, given as

ξ j; ξk
D E

ψi

¼ ∫
s∈S2 ξ j sð Þξk sð Þds;

where ξ j; ξk ∈ Tψi
Ψ are tangent vectors at ψi. The geodesic distance

between any two functions ψi, ψj ∈ ψ on a unit Hilbert sphere is the
angle

dist ψi;ψ j

� �
¼ logψi

ψ j

� ���� ���
ψi

¼ cos−1 ψi;ψ j

D E
¼ cos−1 ∫

s∈S2ψi sð Þψ j sð Þds
� �

; ð3Þ

where 〈⋅, ⋅〉 is theL2 dot product on the sphereS2. Note that the geodesic
distance is not rotation invariant. logψi

ψ j

� �
is the logarithmmap from ψi

to ψj with the closed-form formula

ψiψ j
��! ¼ logψi

ψ j

� �
¼

ψ j− ψi;ψ j

D E
ψiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ψi;ψ j

D E2
r cos−1 ψi;ψ j

D E
: ð4Þ
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