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Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human
brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with
high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the
MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as
well as spatial constraints to improve source localization accuracy, but these methods can be computationally in-
tense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological
processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed
sources representing large-scale functional networks. Recent developments in the theory of compressed sensing
(CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms
referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complex-
ity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-
dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this
paper, we develop a novel greedy pursuit algorithm for sparseMEG source localization that overcomes these funda-
mental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical
(SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accu-
racy.We evaluate the performance of the proposed algorithmusing comprehensive simulations, aswell as the anal-
ysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal
substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization
accuracy, and robustness.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Magnetoencephalography (MEG) is among the most popular non-
invasive modalities of brain imaging, and provides measurements of
the collective electromagnetic activity of neuronal populations with
high temporal resolution on the order of milliseconds. This technique
has been used to study the mechanisms of language, cognition, sensory

function, and brain oscillations, as well as the localization of epileptic
seizures.

Localizing active regions in the brain from MEG measurements
requires solving the high-dimensional ill-posed neuromagnetic in-
verse problem: given measurements from a limited number of sen-
sors (~102 sensors) and a model for the observation process, the
goal is to estimate spatiotemporal cortical activity over numerous
sources (~104 sources). The ill-posedness of this problem is due
not only to the limited number of measurements compared to un-
knowns, but also due to the high spatial dependency between mea-
surements. The ill-posed nature of the inverse problem limits the
spatial resolution of MEG. In comparison, other imaging modalities
such as functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET) have high spatial resolution, but poor
temporal resolution.

In the past two decades, various inverse solutions have been pro-
posed for MEG and Electroencephalography (EEG) source localization.
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The earliest proposals appearing in the literature aimed at regular-
ized least squares solutions to the neuromagnetic inverse problem
(Gorodnitsky et al., 1995; Hämäläinen and Ilmoniemi, 1994;
Pascual-Marqui et al., 1994; Uutela et al., 1998; Van Veen et al.,
1997). Later on, inverse solutions in the framework of Bayesian estima-
tion were introduced, with the underlying assumption of temporal in-
dependence (Mattout et al., 2006; Nummenmaa et al., 2007; Phillips
et al., 2005; Sato et al., 2004; Wipf and Nagarajan, 2009). In order to
impose spatio-temporal smoothness on the inverse solution, subse-
quent algorithms in the Bayesian framework considered the design of
spatio-temporal priors (Baillet and Garnero, 1997; Bolstad et al., 2009;
Daunizeau and Friston, 2007; Daunizeau et al., 2006; Friston et al.,
2008; Greensite, 2003; Limpiti et al., 2009; Trujillo-Barreto et al.,
2008; Zumer et al., 2008) or employed linear state-space models
(Galka et al., 2004; Lamus et al., 2007; Long et al., 2011; Yamashita
et al., 2004). Despite their improved accuracy in source localization,
many of these more recent solutions suffer from unwieldy computa-
tional complexity.

Sparse solutions to the MEG/EEG source localization problem have
received renewed attention in recent years (Durka et al., 2005;
Gorodnitsky et al., 1995; Gramfort et al., 2011, 2012; Ou et al., 2009;
Tian and Li, 2011; Tian et al., 2012; Valdés-Sosa et al., 2009; Vega-
Hernández et al., 2008). Althoughmany of thesemethods are computa-
tionally demanding, they have been shown to enhance the accuracy of
source localization. The sparsity constraints underlying these methods
express the intuition that out of the ~104 potential sources, only a
small number are truly active. In many applications of MEG/EEG source
localization, such as sensory or cognitive studies, the underlying cortical
domains responsible for the processing are relatively focal and thus
sparse. Processes that are spatially-distributed can also be sparse in
some basis: for instance, resting-state fMRI dynamics are broadly dis-
tributed across the cortex, yet appear to be organized within a small
number of specific networks (Damoiseaux et al., 2006). Spatial sparsity
is therefore not only amathematically attractive constraint, but also one
that is consistentwith the neurophysiological processes underlying EEG
and MEG.

The advent of compressed sensing (CS) theory has paved theway to
establish a rigorous framework for efficient sampling and estimation of
signals with underlying sparse structures (Candès et al., 2006; Donoho,
2006). CS methods have found applications in various disciplines such
as communication systems, computational biology, geophysics, and
medical imaging (see Bruckstein et al., 2009 for a survey of the CS re-
sults). The problem of recovering a sparse unknown signal given limit-
ed observations is combinatorial and NP-hard in nature (Bruckstein
et al., 2009). Several solutions to this problem have been proposed,
which can be categorized into optimization-based methods, greedy
pursuit methods, and coding theoretic/Bayesian methods. These solu-
tion categories pertain to different regimes of sparseness as well as
different ranges of computational complexity. Moreover, they all re-
quire certain notions of regularity in the measurement structure
which must be satisfied in order to guarantee convergence and sparse
recovery.

In thiswork,we develop an inverse solution to theMEG inverse prob-
lem in the context of CS theory that achieves both high localization accu-
racy and very low computational cost. This algorithm is based on a class
of greedy pursuit algorithms known as Subspace Pursuit (Dai and
Milenkovic, 2009) or Compressive SamplingMatching Pursuit (CoSaMP)
(Needell and Tropp, 2009). These algorithms can achieve high recovery
accuracy with low computational complexity, but are difficult to apply
directly to the MEG inverse problem because of the high-dimensional
structure of the MEG source space and the high spatial correlation in
MEG measurements. We introduce novel algorithms that address both
of these issues in a principled manner. Through comprehensive simula-
tion studies and analysis of humanMEG data, we demonstrate the utility
of the proposed method, and its superior performance compared to
existing methods.

Methods

The MEG observation model

The MEG data consists of a multidimensional time series recorded
using an array of sensors located over the scalp. Let N denote the num-
ber of such sensors, and t = 1,⋯,T denote the discrete time stamps cor-
responding to the sampling frequency fs. We denote by yi,t themagnetic
measurement of the ith sensor at time t, for 1 ≤ i ≤ N and 1 ≤ t ≤ T. Let
yt: = [y1,t,y2,t,⋯,yN,t]′ denote the vector of measurements at time t.
Finally, we denote the multidimensional observation time series in the
interval [0,T] by the N × T matrix Y: = [y1,y2,⋯,yT].

We pose the source localization problem over a distributed source
model comprising dipoleswithfixed locations and possibly variable ori-
entations, representing the cortical activity. LetM be the total number of
dipole sources distributed across the cortex, and let xi,t denote the am-
plitude of the ith dipole at time t. Denoting by xt: = [x1,t,x2,t,⋯,xM,t]′ the
vector of dipole amplitudes at time t, the source space can be fully
characterized by theM × T matrix X: = [x1,x2,⋯,xT].

For a fixed configuration of dipoles, the observation matrix Y can be
related to the source activity matrix X as follows:

Y ¼ GXþ V; ð1Þ

where G ∈ ℝN × M is the lead field matrix and V: = [v1,v2,⋯,vT] ∈ ℝN × T

is the observation noise matrix. The lead field matrix G is a mapping
from the source space to the sensor space and can be computed using
a quasi-static approximation to the Maxwell's equations (Hämäläinen
et al., 1993). The observation noise is assumed to be zero-mean
Gaussian, with spatial covariance matrix C ∈ ℝN × N with no temporal
correlation.

The MEG inverse problem corresponds to estimating X given Y, G
and the statistics ofV. The traditional source spaces used forMEG source
localization have a dimension of M ~ 103–105, whereas the number of
sensors is typically N ~ 102. Since M ≫ N, the MEG inverse problem is
highly ill-posed and hence requires constructing appropriate spatio-
temporal priors in order to estimate X reliably.

The Minimum Norm Estimate

As outlined in the Introduction, various source localization tech-
niques have been developed since the invention of MEG. Arguably, the
Minimum Norm Estimate (MNE) inverse solution is the most widely-
used MEG source localization technique (Hämäläinen and Ilmoniemi,
1994). In what follows, we give a brief overview of the MNE and one
of its recent variants.

The MNE inputs Y, G, C and a spatial prior covariance Q/
λ2 ∈ ℝM × M on X with λ being a scaling factor, and solves for:

X̂MNE Y;G;C;Q ;λð Þ :¼ argmin
X

XT
t¼1

yt−Gxtk k2C−1 þ λ2 xtk k2Q−1

n o
: ð2Þ

The role of the spatial prior covariance Q is to weight the penaliza-
tion of the energy of the estimated sources across the source space
(Hämäläinen and Ilmoniemi, 1994; Lamus et al., 2012). Moreover, the
scaling factor λ can be viewed as a regularization parameter, controlling
the Q-weighted ‘2-norm of the estimate. The minimization is separable
in time, and the estimate can be expressed in closed form as:

X̂MNE Y;G;C;Q ;λð Þ ¼ QG′ GQG′ þ λ2C
� �−1

Y: ð3Þ

It is more convenient to compute the MNE estimate in a whitened
model in favor of computational stability. The whitened model is
obtained by the pre-multiplication of the observation model by C−1/2.
Let eY : = C−1/2Y and eG :¼ C−1=2G denote the whitened observation
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