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Neuroimaging group analyses are used to relate inter-subject signal differences observed in brain imaging with
behavioral or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity
of current voxel-based analysis schemes may however lead to non-reproducible results. We introduce a new
approach to overcome the limitations of standard methods, in which active voxels are detected according to
a consensus on several random parcellations of the brain images, while a permutation test controls the false
positive risk. Both on synthetic and real data, this approach shows higher sensitivity, better accuracy and higher
reproducibility than state-of-the-art methods. In a neuroimaging–genetic application, we find that it succeeds in
detecting a significant association between a genetic variant next to the COMT gene and the BOLD signal in the
left thalamus for a functional Magnetic Resonance Imaging contrast associated with incorrect responses of the
subjects from a Stop Signal Task protocol.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Analysis of brain images acquired on a group of subjects makes it
possible to draw inferences on regionally-specific anatomical properties
of the brain, or its functional organization. The major difficulty with

such studies lies in the inter-subject variability of brain shape and
vasculature. In functional studies, a task-related variability of subject
performance is also observed. The standard-analytic approach is to
register and normalize the data in a common reference space. However
a perfect voxel-to-voxel correspondence cannot be attained, and the
impact of anatomical variability is tentatively reduced by smoothing
(Frackowiak et al., 2003). This problem holds for any statistical test, in-
cluding those associatedwithmultivariate procedures. In the absence of
ground truth, choosing the best procedure to analyze the data is a chal-
lenging problem. Practitioners as well as methodologists tend to prefer
models that maximize the sensitivity of a test under a given control for
false detections. The level of sensitivity conditional to this control is in-
deed informative on the usefulness of a model.
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Classic statistical tests for neuroimaging

The reference approach in neuroimaging is to fit and test a model
at each voxel (univariate voxelwise method), but the large number of
tests performed yields a multiple comparison problem. The statistical
significance of the voxel intensity test can be correctedwith various sta-
tistical procedures. First, Bonferroni correction consists in adjusting the
significance threshold by dividing it by the number of tests performed.
This approach is known to be conservative, especially when non-
independent tests are involved, which is the case of neighboring voxels
in neuroimaging. Another approach consists in a permutation test to
perform a family-wise correction of the p-values (Nichols and Holmes,
2002). Although computationally costly, this method has been shown
to yield more sensitive results than studies involving Bonferroni-
corrected experiments (Petersson et al., 1999). A good compromise be-
tween computation cost and sensitivity can be found in analytic correc-
tions based on Random Field Theory (RFT), in which the smoothness of
the images is estimated (Worsley et al., 1992). However, this approach
requires both high threshold and data smoothness to be really effective
(Hayasaka et al., 2004).

Another widely used method is a test on cluster size, which aims
to detect spatially extended effects (Friston et al., 1993; Poline and
Mazoyer, 1993; Roland et al., 1993). The statistical significance of the
size of an activation cluster can be obtained with theoretical corrections
based on the RFT (Hayasaka et al., 2004;Worsley et al., 1996b) orwith a
permutation test (Holmes et al., 1996; Nichols and Holmes, 2002).
Cluster-size tests tend to be more sensitive than voxel-intensity tests,
especially when the signal is spatially extended (Friston et al., 1996;
Moorhead et al., 2005; Poline et al., 1997), at the expense of a strong sta-
tistical control on all the voxels within such clusters. This approach
however suffers from several drawbacks. First, such a procedure is in-
trinsically unstable and its result depends strongly on an arbitrary
cluster-forming threshold (Friston et al., 1996). The threshold-free
cluster enhancement (TFCE) addresses this issue, by avoiding the
choice of an explicit, fixed threshold (Salimi-Khorshidi et al., 2011;
Smith and Nichols, 2009) but leads to other arbitrary choices: the
TFCE statistic mixes cluster-extent and cluster-intensity measures in
proportions that can be defined by the user. More generally, tests
that combine cluster size and voxel intensity have been proposed
(Hayasaka and Nichols, 2004; Poline et al., 1997). Second, the correla-
tion between neighboring voxels varies across brain images, which
makes detection difficult where the local smoothness is low. Combin-
ing permutations and RFT to adjust for spatially-varying smoothness
leads to more sensitive procedures (Hayasaka et al., 2004; Salimi-
Khorshidi et al., 2011). A more complete discussion of the limitations
and comparisons of these techniques can be found in (Moorhead
et al., 2005; Petersson et al., 1999).

Spatial models for group analysis in neuroimaging

Spatial models try to overcome the lack of correspondence between
individual images at the voxel level. The most straightforward and
widely used technique consists of smoothing the data to increase the
overlap between subject-specific activated regions (Worsley et al.,
1996a). In the literature, several approaches propose more elaborate
techniques to model the noise in neuroimaging, like Markov Random
Fields (Ou et al., 2010), wavelet decomposition (Van de Ville et al.,
2004), spatial decomposition or topographic methods (Flandin and
Penny, 2007; Friston and Penny, 2003) and anatomically informed
models (Keller et al., 2009). These techniques are not widely used prob-
ably because they are computationally costly and not always well-
suited for analysis of a group of subjects. A popular approach consists
of working with subject-specific Regions of Interest (ROIs), that can be
defined in a way that accommodates inter-subject variability (Nieto-
Castanon et al., 2003). The main limitation of such an approach
(Bohland et al., 2009) is that there is no widely accepted standard for

partitioning the brain, especially for the neocortex. Data-driven
parcellationwas proposed by Thirion et al. (2006) to overcome this lim-
itation: they improve the sensitivity of randomeffect analysis by consid-
ering parcels defined at the group level.

Neuroimaging–genetic studies

While most studies investigate the difference of activity between
groups or the level of activity within a population, neuroimaging
studies are often concerned by testing the effect of exogeneous vari-
ables on imaging target variables, and there is increasing interest
in the joint study of neuroimaging and genetics to improve under-
standing of both normal and pathological variability of the brain orga-
nization. Single nucleotide polymorphisms (SNPs) are the most
common genetic variants used in such studies: They are numerous
and represent approximately 90% of the genetic between-subject vari-
ability (Collins et al., 1998). Voxel intensity and cluster size methods
have been used for genome-wide association studies (GWAS) (Stein
et al., 2010), but the multiple comparison problem does not permit
finding significant results, despite efforts to estimate the effective
number of tests (Gao et al., 2010) or by running computationally
expensive, but accurate permutation tests (Da Mota et al., 2012). Re-
cently, important efforts have been done to design more sophisticated
multivariate methods (Floch et al., 2012; Kohannim et al., 2011;
Vounou et al., 2010), the results of which are more difficult to inter-
pret; another alternative is to work at the gene level instead of SNPs
(Ge et al., 2012; Hibar et al., 2011).

The randomized parcellation approach

The parcellationmodel (Thirion et al., 2006) has several advantages:
(i) it is a simple and easily interpretable method, (ii) by reducing the
number of descriptors, it reduces the multiple comparisons problem,
and (iii) the choice of the parcellation algorithm can lead to parcels
adapted to the local smoothness. But parcellations, when considered
as spatial functions, highly depend on the data used to construct them
and the choice of the number of parcels. In general, a parcellation de-
fined in a given context might not be a good descriptor in a slightly
different context, ormay generalize poorly to new subjects. This implies
a lack of reproducibility of the results across subgroups, as illustrated
later in Fig. 7. The weakness of this approach is the large impact of a
parcellation scheme that cannot be optimized easily for the sake of sta-
tistical inference; it may thus fail to detect effects in poorly segmented
regions. We propose to solve this issue by using several randomized
parcellations (Bühlmann et al., 2012; Varoquaux et al., 2012) generated
using resampling methods (bootstrap) and average the corresponding
statistical decisions. Replacing an estimator such as parcel-level infer-
ence bymeans of bootstrap estimates is known to stabilize it; a fortunate
consequence is that the reproducibility of the results (across subgroups
of subjects) is improved. Formally, this can be understood as handling
the parcellation as a hidden variable that needs to be integrated out in
order to obtain the posterior distribution of statistical values. The final
decision is taken with regard to the stability of the detection of a voxel
(Alexander and Lange, 2011;Meinshausen and Bühlmann, 2010) across
parcellations, compared to the null hypothesis distribution obtained by
a permutation test.

A multivariate problem: the detection of outliers

The benefits of the randomized parcellation approach can also be ob-
served in multivariate analysis procedures, such as predictive modeling
(Varoquaux et al., 2012) or outlier detection. In this work, we focus on
the latter: neuroimaging datasets often contain atypical observations;
such outliers can result from acquisition-related issues (Hutton et al.,
2002), bad image processing (Wuet al., 1997), or they canmerely be ex-
treme examples of the high variability observed in the population.
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