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Estimating and modeling functional connectivity in the brain is a challenging problem with potential appli-
cations in the understanding of brain organization and various neurological and neuropsychological condi-
tions. An important objective in connectivity analysis is to determine the connections between regions of
interest in the brain. However, traditional functional connectivity analyses have frequently focused on
modeling interactions between time series recordings at individual sensors, voxels, or vertices despite the
fact that a single region of interest will often include multiple such recordings. In this paper, we present a
novel measure of interaction between regions of interest rather than individual signals. The proposed mea-
sure, termed canonical Granger causality, combines ideas from canonical correlation and Granger causality
analysis to yield a measure that reflects directed causality between two regions of interest. In particular, ca-
nonical Granger causality uses optimized linear combinations of signals from each region of interest to enable
accurate causality measurements from substantially less data compared to alternative multivariate methods
that have previously been proposed for this scenario. The optimized linear combinations are obtained using a
variation of a technique developed for optimization on the Stiefel manifold. We demonstrate the advantages
of canonical Granger causality in comparison to alternative causality measures for a range of different simu-
lated datasets. We also apply the proposed measure to local field potential data recorded in a macaque brain
during a visuomotor task. Results demonstrate that canonical Granger causality can be used to identify causal
relationships between striate and prestriate cortexes in cases where standard Granger causality is unable to
identify statistically significant interactions.

© 2013 Published by Elsevier Inc.

Introduction

An important objective in brain research is to understand how in-
formation propagates between different regions (Jirsa and McIntosh,
2007). Electrophysiological measurements of brain activity can be
useful for achieving this goal, since they provide rich information
about the location and temporal dynamics of spontaneous and
task-related brain networks. In particular, invasive local field poten-
tial (LFP) and electrocorticography (ECoG) measurements as well as
noninvasive electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) data allow for the modeling of brain connectivity, with
wide ranging implications for addressing neuroscientific questions
(Astolfi et al., 2007; Bressler et al., 2007; Schoffelen and Gross,
2009), understanding mechanisms of neuropathology (Lin et al.,
2009; Wilke et al., 2009) and studying neuropsychological conditions
(Hesse et al., 2003). Many connectivity models require assumptions
regarding the behavior of the relationship between signals from dif-
ferent regions; for example, autoregressive models try to find areas
of the brain whose electrical activity co-varies with past activity in
other areas of the brain (Cheung et al., 2010; Hesse et al., 2003).

This paper focuses on models based on Granger causality (GC)
(Granger, 1969). Causal models estimate the strength and direction-
ality of signal interactions by analyzing the joint distributions of
their time series under appropriate modeling assumptions. Classical
methods for causal modeling analyze causality between multiple
time series in a pairwise fashion, using bivariate models (Geweke,
1982). However, pairwise analysis is not ideal for functional brain
mapping experiments in which multiple time series are available
from different sensors, voxels (in a reconstructed source volume),
or vertices (from a reconstructed source surface). Usually, such
time series can be spatially correlated because of the limited spatial
resolution of the mapping techniques or because functional activa-
tion is spatially distributed across a larger region of cortex. One ap-
proach could be to remove the influence of these confounds via
partial measures of causality (Guo et al., 2008), but such partial mea-
sures usually require the estimation of a complex parametric model
and may be hard to interpret (Eichler, 2006; Kuś et al., 2004; Zhou
et al., 2009).

Rather than analyzing causality independently between pairs of
time series, in some cases it may be more desirable to analyze causa-
lity between multiple regions of interest (ROIs) that each includes
multiple correlated time series (d'Alessandro et al., 2003). Grouping
multiple time series together can reduce the number of variables to
estimate in a parametric model, can improve the signal-to-noise
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ratio of the resulting causality measure, and can help in identifying
long-range connectivity that might previously have been obscured
by larger apparent short-range connectivity that is artificially intro-
duced by crosstalk within the ROI (Bin et al., 2009).

Many methods have been proposed to assess connectivity be-
tween ROIs. One popular method is canonical correlation (Hotelling,
1936), which estimates an undirected model of connectivity by
maximizing the correlation between weighted linear combinations
of signals from two ROIs. In addition to providing a measure of
connectivity, canonical correlation also provides an estimate of the
relative contribution of each signal from each ROI to the correlation
between the ROIs (Deleus and Van Hulle, 2011; Kuylen and Verhallen,
1981). Canonical correlation analysis, however, is not a causal model
and provides no information about the direction of information flowbe-
tween ROIs.

Models of directed interaction between ROIs often use the con-
cept of GC. Multivariate Granger causality (MGC) (Barrett and Seth,
2010) relies on multivariate autoregressive models of the signals
between each ROI.WhileMGC can be accurate when the data records
are sufficiently long, MGC involves substantially more parameters to
estimate than do bivariate methods and can be prone to overfitting
and sensitive to noise. A possible way to reduce this effect is to use
penalized autoregression to promote certain desirable qualities in
the estimation of causality such as spatial smoothness or sparse con-
nectivity (Valdés-Sosa et al., 2005). Another approach is Granger
canonical correlation analysis (GCCA), (Wu et al., 2011) which
aggregates signals in each ROI much like canonical correlation anal-
ysis. This approach results in a reduction of the number of parame-
ters to estimate relative to methods like MGC and penalized
autoregression, although it does not estimate the amount of causali-
ty or the underlying signals responsible for the causal connection
(Sato et al., 2010), and can only identify the presence or absence of
causality.

In this paper we formulate, develop, and apply a novel directed
causal connectivity measure called canonical Granger causality
(CGC) that combines the strengths of canonical correlation with the
directionality of GC. Our CGC measure combines the strengths and
overcomes the disadvantages of GC and MGC by using an optimized
weighted linear combination of the time series to parsimoniously
represent each ROI with a single time series. This is similar to the
idea of canonical correlation, where the signal dimensionality is re-
duced by considering the weighted sum of signals (Correa et al.,
2010). Subsequently, CGC computes standard bivariate GC between
the two representative time series.

While CGC and MGC both summarize causal influences between
ROIs, CGC is a more parsimonious model and thus is more stable for
short time series as shown in the following sections. CGC and penal-
ized autoregression both estimate causal models with low complexi-
ty, but CGC uses the a priori information to select regions of interest
while penalized autoregression simply looks for sparse causal interac-
tions without addressing problems related to crosstalk between sig-
nals. Finally, similar to GCCA, CGC also uses weighted sums to
represent each region when estimating causality. However, CGC esti-
mates the strength of causality between those regions; results from
our simulations will show that CGC can thus better estimate the un-
derlying connectivity between the signals of interest in each region
(Fig. 1).

A preliminary version of CGC was presented by Ashrafulla et al.
(2012). This paper expands substantially upon the results presented
in that work, presenting a refined procedure for computing CGC,
using extensive simulations to evaluate and characterize the ap-
proach relative to methods like MGC and GCCA, and applying the
method to identify causality in real LFP data.

The paper is organized as follows. First, we reviewGC andMGC to es-
tablish the groundwork for CGC, and we describe GCCA for comparison.
We then present the CGC measure and associated algorithm. We follow

with a simulation study illustrating the advantages and disadvantages of
the proposed measure. CGC is then applied to real brain data acquired
from a macaque performing a visuomotor task (Bressler et al., 1993).
We show that for this data, CGC can identify causal interactions between
striate and prestriate regions of the occipital lobe.

Review of Granger causality measures

Granger causality (GC)

Let x1 and x2 be two time series of length N. If the past values of x2
substantially improve the prediction of x1, then x2 is said to “Granger
cause” x1 (Granger, 1969). GC thus attempts to measure the extent
to which past values of x2 can be used to predict the present value
of x1 (Sims, 1972). Mathematically, calculation of GC from x2 to x1
considers two different Pth order autoregressive (AR) models
given by:

x1 n½ � ¼
XP
p¼1

b p½ �x1 n−p½ � þ r1 n½ � ð1Þ

x1 n½ �
x2 n½ �

� �
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x2 n−p½ �
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n ¼ 1;…;N

where the AR coefficients b p½ � ∈ R and A p½ � ∈ R2�2, p = 1,…,P, are
estimated by minimizing the variance or 2-norm of the prediction errors
r1[n] and [s1[n] s2[n]]T in Eqs. (1) and (2) respectively. The quantities

ρ2
1 ¼ 1

N−1

XN
n¼1

r1 n½ �ð Þ2 and σ2
2→1 ¼ 1

N−1

XN
n¼1

s1 n½ �ð Þ2 ð3Þ

measure the total AR prediction errors under the two different
models. ρ12 is a measure of how well the past of x1 can be used to pre-
dict its future values, while σ2 → 1

2 is a measure of how well the past

Fig. 1. We want to estimate the causality from the source region to the sink region via
the time series recordings (represented by dark circles) from each region. GC analyzes
the causality between pairs of recordings using univariate and bivariate autoregressive
models. MGC fits much larger parametric autoregressive models to collections of time
series. CGC parsimoniously represents each ROI using a single signal formed through
an optimized weighted linear combination of signals from the ROI. CGC then applies
standard GC analysis to these parsimonious representations.
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