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Reward outcome signalling in the sensory cortex is held as important for linking stimuli to their consequences
and for modulating perceptual learning in response to incentives. Evidence for reward outcome signalling has
been found in sensory regions including the visual, auditory and somatosensory cortices across a range of dif-
ferent paradigms, but it is unknown whether the population of neurons signalling rewarding outcomes are
the same as those processing predictive stimuli. We addressed this question using a multivariate analysis of
high-resolution functional magnetic resonance imaging (fMRI), in a task where subjects were engaged in in-
strumental learning with visual predictive cues and auditory signalled reward feedback. We found evidence
that outcome signals in sensory regions localise to the same areas involved in stimulus processing. These out-
come signals are non-specific and we show that the neuronal populations involved in stimulus representation
are not their exclusive target, in keepingwith theoretical models of value learning. Thus, our results reveal one
likely mechanism through which rewarding outcomes are linked to predictive sensory stimuli, a link that may
be key for both reward and perceptual learning.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

Successful reward learning requires that an organism processes
information about appetitive and aversive states, as well as assign
causal responsibility for such states to antecedent events, that usually
take the form of sensory stimuli. Whilst the first problem has been
the subject of considerable neuroscientific study, the second, ‘credit
assignment’ problem has been little explored in humans. One way
in which the brain might perform a credit assignment is to direct a
‘teaching signal’, based on rewarding outcomes, to regions involved
in stimulus processing (Friston et al., 1994; Roelfsema et al., 2010).
Recently, several studies report evidence consistent with this, show-
ing that rewarding feedback is associated with activity in sensory
areas associated with stimulus processing, even in the absence of con-
current stimulation in that modality (Brosch et al., 2011; Pleger et al.,
2008, 2009; Weil et al., 2010).

What is less clear is how populations of cells in sensory regions,
targeted by an outcome signal, relate to those involved in stimulus
representation. Supervised learning schemes, such as error back-
propagation (Rumelhart et al., 1986), require generation of error sig-
nals tailored for each unit (Roelfsema and van Ooyen, 2005). This
predicts a specific reactivation by reward feedback of units involved

in stimulus representation. Such schemes are efficient but are consid-
ered to lack biological plausibility (Crick, 1989). Value learningmodels,
by contrast, use a non-specific error signal that only modifies eligible
connections; namely, those mediating the valuable outcome (Friston
et al., 1994; Sutton and Barto, 1998) (visual stimuli within the last five
seconds, for example). In a neurophysiological context, this predicts a
non-specific input to sensory neurons to enable an associative increase
in the strength of synaptic connections between recently active cells
(Bailey et al., 2000; Calabresi et al., 2007; Izhikevich, 2007; Roelfsema
et al., 2010). Critically, these two possibilitiesmake different predictions
about the relationship between spatial patterns of activity reflecting
stimulus and outcome processing in stimulus-processing regions of
the sensory cortex.

We tested predictions from these frameworks using fMRI adapta-
tion. In brief, when two stimuli that activate the same neurons are
presented in close temporal contiguity, the second stimulus produces
a reduced BOLD response compared with an equivalent stimulus that
does not activate the same population (Grill-Spector et al., 2006;
Sawamura et al., 2006). Although the precise electrophysiological
correlates remain unclear (Grill-Spector et al., 2006), this methodol-
ogy has been used to probe stimulus representations across a range
of distinct domains (Fang et al., 2007; Sawamura et al., 2006;
Winston et al., 2004). We were interested in comparing neuronal re-
sponses to stimuli and their reward outcomes. To do this, we adopted
a relatively new approach, based on spatial correlations within a re-
gion (Kriegeskorte and Bandettini, 2007; Kriegeskorte et al., 2008).
We reasoned that if reward signals selectively reactivate sensory neu-
rons involved in representing a preceding stimulus, then activations
induced by the stimulus and reward should co-localise and their
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patterns, over voxels, should be positively correlated. Conversely, if re-
ward outcomes activate sensory neurons in a non-specific fashion,
recently-activated stimulus-specific populations should show adapta-
tion and be less responsive to reward signals, resulting in the activation
patterns due to stimulus and reward being negatively correlated
(Fig. 1). Crucially, this negative correlation should occur in the context
of an overall positive response to reward, distinguishing them from
simple reward-induced deactivations.

To test our hypotheses, we analysed high resolution fMRI data
(FitzGerald et al., 2012) collected whilst subjects performed an instru-
mental learning task with visual cues and auditory feedback (Fig. 2).
Specifically, we examined spatial correlations within an area of visual
cortex responsive to cues and rewarding outcomes.

Materials & methods

Subjects

Twenty six (ten female) right-handed subjects, age range = 19–28
years, all free of psychiatric or neurological disease, participated in the

study. The study was approved by the Joint National Hospital for Neu-
rology and Neurosurgery (University College London Hospitals NHS
trust) and Institute of Neurology (University College London) Ethics
Committee. The subjects were paid according to their performance dur-
ing the task (from £21.80–£28.80).

Stimuli & task

The subjects performed an instrumental learning task with visual
cues and auditory feedback (FitzGerald et al., 2012) (Fig. 2). On each
trial of the experiment, the subjects were presented with a visual
cue consisting of a box with a coloured pattern, and made either a
‘left’ or a ‘right’ response by pressing a button on the corresponding
keypad. After 2.5 s, they were played either a higher pitched ‘win’
sound, or a lower pitched ‘nowin’ sound, each lasting for 1 s. The visual
cue disappeared at the end of the sound. There was a variable inter-trial
interval of 1–3 s between the trials. The subjects received 10 pence for
each win.

Each cue had one of eight contingency types (win probabilities of
[0.05 0.30], [0.05 0.55], [0.3 0.55], [0.4 0.9], with either P(Win|Chose
Right) N P(Win|Chose Left) or the converse). Over the course of the
experiment, each contingency type was repeated three times, using
a total of 24 cues. The experiment was separated into blocks of 44
trials. In each block, two cues appeared in pseudo randomised order
(we applied the constraint that no cue could be presented on more
than three consecutive trials). Cues with identical or mirror image
contingencies were never presented together in the same block. The
subjects performed 6 blocks in each of two scanning sessions (12 in
total). Each cuewas presented in only one block. The subjects responded
using two fMRI-compatible button boxes, one held in each hand.

Behavioural analysis

Behavioural analysis was performed, as previously described, by
fitting a Q-learning algorithm, incorporating a softmax decision rule
(FitzGerald et al., 2012). Q-learning updates the values of individual
stimulus action pairs Q(s,a) according to a reward prediction error
weighted by a learning rate α (Watkins and Dayan, 1992).
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Fig. 1. Cartoon illustrating the effects of non-specific and generalised reward feedback
on the spatial correlations between stimulus and outcome activity. (Darker colours
indicate greater activity/responsiveness) Stimulus processing produces an adaptation
effect, manifest in a decreased responsiveness which is greatest in voxels with the
strongest response to the stimulus. If reward feedback signals are non-specific, this
leads to a negative spatial correlation between stimulus and outcome activity. If reward
feedback signals are specific to those neurons involved in stimulus representation,
there will be a positive spatial correlation between stimulus and outcome activity.

Fig. 2. A: Reward learning task. Subjects were presented with a visual stimulus, and given 2500 ms to make one of two responses, which were rewarded according to fixed prob-
abilities for each stimulus-action pairing. Outcomes were then signalled with two different sounds, which were presented for 1000 ms — followed by a jittered inter-trial interval
(1000–3000 ms, uniform distribution). B: Learning curve, averaged across all cues and subjects. Subjects increasingly chose the objectively higher-valued option, indicating that
they were able to acquire appropriate responses to the reward contingencies. (Solid line: learning curve based on observed choice behaviour. Dashed line: learning curve based
on Q-learning models fitted to individual subject behaviour. Error bars indicate bootstrapped 95% confidence intervals for the observed choice behaviour).
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