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One application of imaging genomics is to explore genetic variants associated with brain structure and function,
presenting a new means of mapping genetic influences on mental disorders. While there is growing interest in
performing genome-wide searches for determinants, it remains challenging to identify genetic factors of small
effect size, especially in limited sample sizes. In an attempt to address this issue, we propose to take advantage
of a priori knowledge, specifically to extend parallel independent component analysis (pICA) to incorporate a
reference (pICA-R), aiming to better reveal relationships between hidden factors of a particular attribute. The
new approach was first evaluated on simulated data for its performance under different configurations of effect
size and dimensionality. Then pICA-R was applied to a 300-participant (140 schizophrenia (SZ) patients versus
160 healthy controls) dataset consisting of structural magnetic resonance imaging (sMRI) and single nucleotide
polymorphism (SNP) data. Guided by a reference SNP set derived from ANK3, a gene implicated by the Psychiatric
Genomic Consortium SZ study, pICA-R identified one pair of SNP and sMRI components with a significant loading
correlation of 0.27 (p = 1.64 × 10−6). The sMRI component showed a significant group difference in loading
parameters between patients and controls (p = 1.33 × 10−15), indicating SZ-related reduction in gray matter
concentration in prefrontal and temporal regions. The linked SNP component also showed a group difference
(p = 0.04) and was predominantly contributed to by 1030 SNPs. The effect of these top contributing SNPs was
verified using association test results of the Psychiatric Genomic Consortium SZ study, where the 1030 SNPs
exhibited significant SZ enrichment compared to the whole genome. In addition, pathway analyses indicated
the genetic component majorly relating to neurotransmitter and nervous system signaling pathways. Given the
simulation and experiment results, pICA-Rmay prove a promisingmultivariate approach for use in imaging geno-
mics to discover reliable genetic risk factors under a scenario of relatively high dimensionality and small effect size.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Imaging genomics is an emerging field dedicated to the study of ge-
netic variants associated with brain structure and function. Structural
or functional imagingmarkers are believed to be closer to the underlying
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biological mechanisms affected by genetic variants than behavioral or
symptom-based measures (Rasch et al., 2010; Turner et al., 2006). A re-
cent meta-analysis lent support for this notion, where schizophrenia
(SZ) risk variants were found to show larger effects at the level of
brain structure and function than behavior (Rose and Donohoe, 2013).
Consequently, interest in studying imaging measures has increased. In
the case of structural imaging,measurements can be obtained via differ-
ent approaches, ranging from single region-of-interest (ROI) methods,
to image-wide approaches such as voxel based morphometry (VBM)
(Ashburner and Friston, 2005) and surface-based measures such as
FreeSurfer (Fischl and Dale, 2000).

High-throughput genotyping employing genome-wide techniques
hasmade it feasible to sample the entire genome of a substantial number
of individuals (Oliphant et al., 2002; Shen et al., 2005).More targeted can-
didate gene strategies examining a limited number of points of genetic
variations have been successfully applied to the study of illnesses such
as Fragile X syndrome (Lightbody and Reiss, 2009). Yet, the candidate
gene approach is less applicable when the genetic basis of a disease is
complex and less understood. For instance, little success has been
achieved in replicating evidence for causal genes in schizophrenia (SZ)
(Duan et al., 2010) using traditional candidate gene approaches. In con-
trast, recent works (Derks et al., 2012; Purcell et al., 2009) lent support
for a polygenic model (Gottesman and Shields, 1967) in many cases of
SZ, where an aggregate of common genetic variants was shown to collec-
tively account for a substantial proportion of variation in risk, despite con-
comitant evidence for rare mutations of large effect size (Xu et al., 2009).
Given such evidence, an unbiased search of the entire genomemaymore
effectively describe the genetic architecture underlying complex disor-
ders in which a significant proportion of risk for the disorder is likely
due to many genetic variants, each carrying a small proportion of disease
risk and failing to reach genome-wide significance individually.

While there is growing interest in image-wide and genome-wide
approacheswhich allowunbiased searches over a large range of variants,
novel mathematical and computational methods are desired to optimal-
ly combine these two strategies. One of themost challenging problems is
the correction for the huge number of statistical tests used in univariate
models. The correction makes it highly difficult to identify a factor of
small effect size with a practical sample size. In addition, univariate
approaches are not well-suited to identify weak effects across multiple
variables. For this reason, multivariate approaches show specific advan-
tage for simultaneously assessingmany variables for an aggregate effect.
To better identify aggregate effects across many variables, a number of
models have been derived, including principal component regression
(PCReg) (Wang and Abbott, 2008), sparse reduced-rank regression
(sRRR) (Vounou et al., 2010) and parallel independent component anal-
ysis (pICA) (Liu et al., 2009).

PCReg, sRRR, and pICA are designed to deal with datasets of high di-
mensionality and yield interpretable results. However these approaches
are not able to take prior information into account. Such information
can be useful to enable a guided yet flexible approach and can improve
the robustness of the results compared to a fully blind approach. For in-
stance, some genes known to participate in a biological pathway critical
to a diseasemay help identify a set of genes contributing in a coordinated
way to a larger network. The incorporation of prior information may be
especially helpful in analyzing genomic data, where a component usually
accounts for a small amount of variance in the data and ismore difficult to
identify (Liu et al., 2012). Thus, we propose parallel independent compo-
nent analysiswith reference (pICA-R), which extends pICA to incorporate
prior information to provide a reference to guide analyses. While pICA is
designed based on regular (blind) ICA to enhance correlation between
two modalities, pICA-R further takes advantage of a priori knowledge to
guide the analysis and pinpoint a particular component of interest em-
bedded in a large complex dataset. In this work, we compare pICA-R
with other multivariate models through simulated data and evaluate
the models under several scenarios. In addition, we apply pICA-R to a
real dataset consisting of whole-brain gray matter concentration

images and genome-wide single nucleotide polymorphisms (SNPs)
to test whether pICA-R is able to yield reliable and interpretable
components given a sample size of 300.

Material and methods

pICA-R

pICA-R is formulated by incorporating a reference constraint into pICA
to guide the component extraction towards a priori knowledge. Typical
pICA builds on regular infomax (Amari et al., 1996; Bell and Sejnowski,
1995) to extract independent components in parallel for each modality,
followed by a conditional enhancement of the inter-modality correlations
(Liu et al., 2009). In comparison, pICA-R imposes an additional constraint
upon the infomax framework tominimize the distance between a certain
component and the reference. The mathematical model is shown below,
and Fig. 1 illustrates the flow of the approach.
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Given a datasetXwith dimension of sample (i.e., subjects) × feature
(i.e., voxels [m = 1], SNPs [m = 2]), Eq. (1) illustrates the mathemati-
cal model of data decomposition, where the observed dataset X is
decomposed into a linear combination of the underlying independent
components, or sources. S is the component matrix, A is the loading or
mixing matrix (estimated as the pseudo inverse of W), W is the
unmixing matrix, and the subscript m runs from 1 to 2, denoting the
data modality. Specifically, pICA-R iteratively solves the unmixing ma-
tricesW1 andW2 simultaneously for the twomodalities, graduallymax-
imizing the objective functions F1, F2 and F3 in themanner described in
Fig. 1. In particular, F1 is the objective function of the regular infomax

Fig. 1. Flow chart of pICA-R.W1 andW2 denote the unmixingmatrices of the twomodalities,
respectively. F1, F2 and F3 represent the objective functions based onwhich unmixingmatri-
ces are updated.
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