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We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for
the analysis ofmagnetoencephalography (MEG). Themethod allows investigation of changes in rhythmic neural
activity as a result of different stimuli and tasks. The introduced classification model only assumes that each
“brain state” can be characterized as a combination of neural sources, each of which shows rhythmic activity at
one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for
each such state. We present decoding results from 9 subjects in a four-category classification problem defined
by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed
with rest periods. The performance of Spectral LDAwas very competitive comparedwith four alternative classifiers
based ondifferent assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and
spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel
and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented
classification methods and visualization tools are freely available as a Matlab toolbox.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Unveiling neuronal information processing in the humanbrain during
real-world experiences is a central challenge in cognitive neuroscience
(Spiers and Maguire, 2007). Conventionally, functional neuroimaging
studies have been applied using relatively simple patterns of sensory
stimuli, and little is known about how the human brain operates
with real-world sensory input.More recently, the neuroimaging commu-
nity has started to introduce more naturalistic experimental conditions
(Hasson et al., 2004, 2008; Hejnar et al., 2007; Kauppi et al., 2010;
Lahnakoski et al., 2012; Wolf et al., 2010), and even “two-person neuro-
science” has been advocated to record brain activity simultaneously
from two interacting subjects (for a review, see Hari and Kujala (2009)).

Due to the diversity of the stimuli and/or the complexity of the exper-
imental settings mimicking real-world conditions, it may be necessary
to use data-driven analysis methods that allow investigation of brain
function without stringent assumptions about the underlying brain
mechanisms (Spiers and Maguire, 2007). One of the most promising
data-driven approaches to analyze complex brain-imaging signals is
“decoding”, which gathers information frommultiple brain imaging sig-

nals to deduce the task, stimuli or brain state during the measurement.
Most commonly, multivariate classifiers are used to discriminate
between categories (Blankertz et al., 2011; Cox and Savoy, 2003;
Kamitani and Tong, 2005; Mitchell et al., 2004; Murphy et al., 2011)
but decoding can also be performed using regression in more complex
experimental settings (Carroll et al., 2009; Kauppi et al., 2011).1

Brain-function decoding can advance our knowledge in different
ways. For instance, above-chance classification performance for an in-
dependent test data set implies the presence of mutual information be-
tween themeasured signals and the categories of interest (Kriegeskorte,
2011). Thus, decoding can be used to test for the presence of specific
stimulus information in the region of interest or across the whole
brain. Additionally, investigating how the trained models are fitted to
the brain-imaging signals tells where and how information is processed
and represented in the brain. For instance, the coefficients of the linear
classifier may provide hints of brain regions involved in the processing
and discrimination of the stimuli (see e.g. Rasmussen et al. (2012)).
It is also possible to construct several decoders based on different neuro-
scientific hypotheses and compare their performances. A priori knowledge
can be incorporated to the decoder design for instance in the form of
neuroscientifically inspired feature transformations (see e.g. Richiardi
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et al. (2011)) or it can be embeddedmore directly to themodel design (see
e.g. Tomioka and Müller (2010)).

So far, most decoding studies in neuroscience have used functional
magnetic resonance imaging (fMRI) signals to demonstrate spatial pat-
terns related to different tasks or stimulus categories (Haynes and Rees,
2006; Tong and Pratte, 2012). However, the poor temporal resolution of
fMRI makes it inherently unsuitable for investigating the fine spectral
and temporal signatures of information encoding. Instead, the brain's
oscillatory electrical activity has been suggested to have a central
role in information processing, and distinct oscillation frequencies and
amplitudes even in the same neuronal structure reflect different brain
states (Singer, 1993). Large neuronal populations can generate synchro-
nized oscillatory electrical activity that can be enhanced or suppressed
by tasks and stimuli, and the dynamics of brain oscillations associ-
ated with distinct brain states forms complex spatiotemporal patterns
(Buzsáki and Draguhn, 2004). Thus, to understand brain function
during real-world experiences, it seems necessary to interpret at the
same time the spatial, temporal and spectral signatures of brain activity.

Magnetoencephalography (MEG) has a millisecond-range temporal
resolution and has therefore potential to reveal detailed spectral and
temporal characteristics of distinct brain states induced by specific
tasks or stimuli. Nevertheless, decoding on the basis of MEG signals
cannot be expected to be an easy task. Several factors, including
the low signal-to-noise ratio (SNR) of single-epoch measurements
and the high dimensionality of whole-scalp recordings, make the
decoding based on MEG signals very challenging. In addition, MEG
signals do not vary only between different individuals under the same
experimental condition, but to some extent also within the same sub-
ject between repeated identical sessions, which makes it complicated
to construct a highly generalizable classifier across sessions and/or
individuals. However, training of the multivariate model based on
single-epochs provides inevitable advantages over a univariate analysis
based on averaged epochs. For instance, a decoding approach allows
finding combinations of the most discriminative features (or sensors)
among a high number of initial features, and provides a principled
way of assessing the goodness of the discrimination in terms of the es-
timated generalization accuracy.

Previously, Besserve et al. (2007) used band-limited power and
phase synchrony features to classify betweenMEGdata recorded during
a visuomotor task and rest condition. Rieger et al. (2008) used temporal
features and wavelet coefficients to predict the recognition of natural
scenes from single-trial MEG recordings. Ramkumar et al. (2013) used
both time-resolved and time-insensitive classifiers to decode from
single-epoch MEG low-level visual features in the early visual cor-
tex. Zhdanov et al. (2007) used temporal features together with the
regularized linear discriminant analysis (regularized LDA) to classi-
fy between two different visual categories (faces and houses) on
the basis of MEG signals. In the “Mind Reading from MEG” chal-
lenge organized in conjunction with the International Conference
on Artificial Neural Networks (ICANN 2011), the task was to design
a classifier to distinguish between different movie categories on the
basis of 204-channel gradiometer MEG data (Klami et al., 2011). The
data were recorded from a single subject who was shown five different
movie clips. Thewinners of the competition extracted statistical features
from time-domain signals and applied sparse logistic regression for
classification (Huttunen et al., 2012).

Decoding has also been applied to electroencephalographic (EEG)
signals. For instance,Murphy et al. (2011) and Simanova et al. (2010) suc-
cessfully decoded abstract semantic categories from EEG data. Moreover,
Chan et al. (2011) used temporal features in the classification
of MEG and EEG data recorded simultaneously while the subjects
performed visual and auditory language tasks.

Classification on the basis ofMEG signals has also been studied in the
context of brain–computer interfaces (BCIs), communicationpathwaysbe-
tween brains and external devices (Bahramisharif et al., 2010; Mellinger
et al., 2007; Santana et al., 2012; van Gerven and Jensen, 2009). A

successful BCI has to distinguish between brain signatures of the users in-
tentions, and both temporal and spectral features have been applied, often
selected based on specific a priori knowledge of the brain function. For in-
stance, preparation tomoveahand is associatedwith abrief suppressionof
the Rolandicmu rhythm that comprises 7–13 Hz and 15–25 Hz frequency
bands. The power estimates characterizing these specific oscillations
originating from the sensorimotor cortex have been successfully applied
to decode motor-imagery tasks, where an individual mentally simulates
different motor actions, such as hand movements (Pfurtscheller and
Neuper, 2001). Even though most of the BCI literature has concentrated
on classification on the basis of EEG, many technical advances in this
field may also benefit MEG-based decoding; see for instance Lemm et al.
(2011), Tomioka and Müller (2010), Dyrholm et al. (2007a), Liu et al.
(2010), Blankertz et al. (2011), Mellinger et al. (2007), Suk and Lee
(2013). On the other hand, the existing best BCI methods are not directly
applicable to our setting because the goals of the analyses and experimen-
tal conditions are different. In BCI, the only goal is maximum classification
accuracy, while in brain-function decoding, it is important to obtain a
decoder with a meaningful interpretation to advance understanding of
brain function. Consequently, many recent neuroimaging studies have
concentrated on the interpretation of the decoding models (Carroll et al.,
2009; de Brecht and Yamagishi, 2012; De Martino et al., 2008; Grosenick
et al., 2013; Rasmussen et al., 2012; Ryali et al., 2012; van Gerven et al.,
2009; van Gerven et al., 2010; Yamashita et al., 2008).

Here, we constructed a brain decoding system for MEG with the
explicit goal of providing an easily interpretable decoder, as well as a
general-purpose decoding toolbox for neuroscientific research. As an
example of this approach, we analyzed MEG data from an experiment
where the subjectswere exposed to blocks of auditory, visual and tactile
stimuli interspersed with rest blocks (Malinen et al., 2007; Ramkumar
et al., 2012). We aimed to decode four distinct brain states, that is, “au-
ditory”, “visual”, “tactile”, and “rest”.

The stimuli were complex, comprising video clips of people and
urban scenes, speech sounds and tone beeps, as well as tactile stimuli
to finger tips, all presented in brief blocks of varying duration within
the same session. Because sensory stimuli are known to activate dis-
crete projection areas, we considered this experiment well-suited for
the validation of our method. However, the applied complex stimuli
(speech and videos) may also activate higher-order processing. For in-
stance, although it is plausible that variations in oscillatory activity in
the visual cortex aremainly responsible for discriminating the visual cat-
egory from the other categories, higher-order brain processes may in-
volve additional neural activity in other brain regions, thereby
complicating the decoding task. On the other hand, the diversity of the
stimuli makes the decoding problem also more interesting, advocating
the use of data-driven approaches based on relativelyweak a priori infor-
mation. As our goal was to build a classifier to infer brain function in an
exploratory manner, we did not impose strong assumptions on spectral
contents or spatial locations of the underlying neural activity; instead,
we tried to capture the most relevant spectrospatial features automati-
cally from a large number (L = 204) ofMEG channels across a relatively
wide frequency band (5–30 Hz).

Materials and methods

Naturalistic stimulation

We analyzed MEG data (306-channel Elekta Neuromag MEG
system (Elekta Oy, Helsinki, Finland), filtered to 0–200 Hz and
digitized at 600 Hz) from a previous experiment (Ramkumar et al.,
2012). Eleven healthy adults (6 females, 5 males; mean age 30 years,
range 23–41 years) were exposed to 6–33 s blocks of auditory, visual
and tactile stimuli. Similar to Ramkumar et al. (2012), data of only
nine of the eleven subjects were used in the analysis; data from two
subjects were discarded due to improper delivery of auditory stimuli.
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