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1 Linear reconstruction of perceived images from human brain activity
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18With the advent of sophisticated acquisition and analysis techniques, decoding the contents of someone's expe-
19rience has become a reality. We propose a straightforward linear Gaussian approach, where decoding relies on
20the inversion of properly regularized encoding models, which can still be solved analytically. In order to test
21our approach we acquired functional magnetic resonance imaging data under a rapid event-related design in
22which subjects were presented with handwritten characters. Our approach is shown to yield state-of-the-art re-
23constructions of perceived characters as estimated from BOLD responses. This even holds for previously unseen
24characters. We propose that this framework serves as a baseline with which to compare more sophisticated
25models for which analytical inversion is infeasible.
26© 2013 Published by Elsevier Inc.
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31 Introduction

32 Neural encoding and decoding are two topics which are of key im-
33 portance in contemporary cognitive neuroscience. Neural encoding re-
34 fers to the representation of certain stimulus features by particular
35 neuronal populations as reflected by measured neural responses. Con-
36 versely, neural decoding refers to the prediction of such stimulus fea-
37 tures from measured brain activity. Encoding is a classical topic in
38 neuroscience which has often been tackled using reverse correlation
39 methods (Ringach and Shapley, 2004). Decoding has gained much re-
40 cent popularity with the adoption of multivariate analysis methods by
41 the cognitive neuroscience community (Haynes and Rees, 2006).
42 While the first decoding studies focused exclusively on the prediction
43 of discrete states such as object category (Haxby et al., 2001) or stimulus
44 orientation (Kamitani and Tong, 2005), more recent work has focused
45 on theprediction of increasingly complex stimulus properties, culminat-
46 ing in the reconstruction of the contents of perceived images (Kay et al.,
47 2008; Miyawaki et al., 2008; Naselaris et al., 2009; Thirion et al., 2006;
48 van Gerven et al., 2010) and even video clips (Nishimoto et al., 2011).
49 From the Bayesian point of view, encoding and decoding are inti-
50 mately related via Bayes' rule where the probability p(x|y) of a stimulus
51 x given a response y is expressed as the product of a likelihood term
52 p(y|x) and aprior p(x), up to some normalizing constant (Friston et al.,
53 2008; Naselaris et al., 2010). The likelihood implements a forward
54 model expressing how certain stimulus features are encoded by neural
55 populations, as reflected by the measured response. The prior specifies
56 how likely each stimulus is before observing any data. Stimulus

57reconstruction is then tantamount to inverse inference in a generative
58model. This approach has been advocated before. (Thirion et al., 2006)
59assumed that each voxel has a Gaussian receptive field which allows in-
60version of the generative model. (Naselaris et al., 2009), in contrast,
61used a complex forward model and did not perform the inversion ex-
62plicitly. Instead they used an empirical prior which assigns a uniform
63probability to images in a predefined set and zero probability to all
64other images. This essentially allows the decoding to be performed by
65the forwardmodel only, without the explicit need for inverse inference.
66In this paper we present a general framework for decoding that ex-
67pands on the ideas put forward in the aforementioned papers. Specifi-
68cally, similar to (Naselaris et al., 2009), we assume that the forward
69model is given by the representation of an image in terms of a set of fea-
70tures, followed by a regularized linear regression. We then derive the
71formulas which, in conjunction with a suitable image prior, allow ex-
72plicit decoding of the images as in (Thirion et al., 2006). The ideas
73presented in this paper extend earlier work on the decoding of discrete
74(binary) inputs to continuous (grey-scale) images (van Gerven et al.,
752011) and improve on results presented in (van Gerven and Heskes,
762012). We focus on the reconstruction of multiple handwritten charac-
77ters that have beenpresented to subjects using a rapid event-relatedde-
78sign. We develop a linear Gaussian approach, analyze properties of the
79encodingmodels obtained in combination with different regularization
80approaches, and show that decodingperformance is remarkably good in
81this context. The simplicity of our framework makes it an ideal bench-
82mark method with which to compare more sophisticated encoding
83and decoding methods.

84Materials and methods

85In this section, we will first explain the Gaussian decoding model and
86describe how parameters of the model are estimated in the presence of
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87 different regularizationmethods. Subsequently, we present the func-
88 tional magnetic resonance imaging (fMRI) experiment which has been
89 conducted in order to validate our approach. Finally, we describe the
90 analyses which have been performed using our approach, based on ac-
91 quired fMRI data.

92 Gaussian decoding

93 Let (x,y) denote a stimulus–response pair, say, an image x ¼
94 x1;…; xp

� �⊤∈Rp, characterized by its pixel values xi, and the associated
95 measured response vector y ¼ y1;…; yq

� �⊤
∈Rq. Without loss of gener-

96 ality, both the stimulus and the response are assumed to be standard-
97 ized to have zero mean and unit standard deviation. In this paper we
98 are interested in decoding the most probable image x from the BOLD
99 response y:

bx ¼ arg max
x

p xjyð Þf g: ð1Þ
100101
102 In previous work, we have shown how this problem can be solved in
103 a discriminative way using a partial least squares approach (van Gerven
104 and Heskes, 2010). Here, we focus on the generative setting, where we
105 wish to use the equivalent formulation:

bx ¼ arg max
x

p yjxð Þp xð Þf g: ð2Þ
106107
108 In order to compute this maximum a posteriori (MAP) estimate, we
109 require an image prior p(x) and a forward model p(y|x). In Naselaris
110 et al. (2009), this problem was solved by assuming an empirical prior
111 that assigned uniform probability to any of n possible images and
112 zero probability to the remaining images. The decoding problem could
113 thus be solved by identifying that image which gave the largest likeli-
114 hood. Here, in contrast, we solve the decoding problemwithout relying
115 on a restricted subset of possible images. Our approach is related to
116 the work presented in Thirion et al. (2006), but we make weaker as-
117 sumptions on the form of the forward model and the image prior. Par-
118 ticularly, we assume that the forward model is given by a regularized
119 linear Gaussian model and the image prior is given by a multivariate
120 Gaussian.
121 We assume that the forward (encoding) model is given by a
122 multiple-output linear regression model, such that

y ¼ B⊤xþ∈; ∈∼N 0;Σð Þ; ð3Þ

123124 with regression coefficients B = (b1, …,bq) and covariance matrix Σ =
125 diag(σ1

2, …,σq
2). It follows that the forward model can be written as a

126 multivariate Gaussian

p yjxð Þ ¼ N y;B⊤x;Σ
� �

∝ exp −1
2
y⊤Σ−1yþ BΣ−1y

� �⊤
x−1

2
x⊤BΣ−1B⊤x

� �
;

ð4Þ

127128 where (4) is its canonical form representation. We further assume that
129 the image prior is given by a zero-mean multivariate Gaussian of the
130 form:

p xð Þ∝ exp −1
2
x⊤R−1x

� �
; ð5Þ

131132 with covariance matrix R.
133 Given p(y|x) and p(x), we can proceedwith decoding. That is, we are
134 interested in computing the mode of the distribution p(x|y). Dropping
135 terms in Eq. (4) not depending on x, this yields

p xjyð Þ∝ exp BΣ−1y
� �⊤

x−1
2
x⊤ R−1 þ BΣ−1B⊤

� �
x

� �
: ð6Þ

136137

138This is recognized as a multivariate Gaussian in canonical form with
139mean m ≡ QBΣ−1y and covariance Q = (R−1 + BΣ−1B⊤)−1. It imme-
140diately follows that

bx ¼ m ¼ R−1 þ BΣ−1B⊤
� �−1

BΣ−1y; ð7Þ

141142since themode of a Gaussian distribution is given by its mean. Eq. (7) is
143a standard result obtained in Bayesian linear regression (Bishop, 2006).
144Note further that the covariance matrix Q captures the posterior vari-
145ance of the image reconstructions.
146For large images, computing (7) may be prohibitively expensive
147since it requires inversion of a p × p covariance matrix, where p is the
148number of pixels. In that case, we can make use of the matrix inversion
149lemma to obtain

bx ¼ R−RB Σ þ B⊤RB
� �−1

B⊤R
� �

BΣ−1y: ð8Þ
150151
152This requires the inversion of a q × qmatrix, where q is the number
153of voxels. Which formulation is most convenient depends on the prob-
154lem at hand.

155Parameter estimation

156In order to be able to use ourmodel for decoding, we first need to es-
157timate the parameters of the prior and the forward model. We assume
158that training data D = {X,Y} has been collected, where X is an N × p
159matrix, such that xij denotes the value of pixel j for the i-th image, and
160Y is an N × q matrix, such that yij denotes the response of voxel j to
161the i-th image. Furthermore, we assume that an independent set of im-
162ages Z has been collected, which will be used to estimate the image
163prior.We use notationmi andmj to denote the i-th row and j-th column
164of a matrix M, respectively.
165The parameters of the image prior are estimated from an indepen-
166dent large set of images {zn}n = 1

M , which are standardized to have zero
167mean and unit variance. In the linear Gaussian case, the required covari-
168ance matrix for the prior is given by

R ¼ 1
N−1

X
n
zn zn
� �⊤

: ð9Þ

169170
171For the forward model, it is easy to see that the parameters for each
172of the responses can be estimated independently due to the diagonality
173of Σ. That is, for each response k, we need to solve an independent linear
174regression problem.Since we are dealing with the small N, large p case,
175regression coefficients need to be properly regularized. Let bbk; bσ2

k

� �
de-

176note the estimates of the vector of regression coefficients and variance
177for voxel k. This estimate takes the form1

bbk; bσ2
k

� �
¼ arg min

b;σ2

1
2Nσ2 ∥yk−Xb∥22 þ Rλ;α;G bð Þ

� 	
ð10Þ

178179where

Rλ;α;G bð Þ ¼ λ α∥b∥1 þ 1−αð Þ1
2
b⊤Gb

� �
ð11Þ

180181is a regularization term which, following Grosenick et al. (2013), we
182refer to as the graph-constrained elastic net (graphnet for short)
183regularizer.
184The graphnet regularizer contains three parameters that can be set
185to obtain different models: λ, α and G. The regularization parameter λ
186determines the amount of regularization. The mixing parameter α de-
187termines the relative contribution of the ‘1 regularization term, which

1 We divide by N to make the regularization strength for a fixed λ independent of N.
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