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Noninvasive neuroimaging studies have revealed a network of brain regions that activate during humanmemory
encoding; however, the relative timing of such activations remains unknown. Here we used intracranially
recorded high-frequency activity (HFA) to first identify regions that activate during successful encoding. Then,
we leveraged the high-temporal precision of HFA to investigate the timing of such activations. We found that
memory encoding invokes two spatiotemporally distinct activations: early increases inHFA that involve the ven-
tral visual pathway as well as the medial temporal lobe and late increases in HFA that involve the left inferior
frontal gyrus, left posterior parietal cortex, and left ventrolateral temporal cortex. We speculate that these acti-
vations reflect higher-order visual processing and top-down modulation of attention/semantic information,
respectively.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Among those experiences that enter the focus of our attention, some
are encoded in a manner that can easily support subsequent recollection
while others are not. This variability in goodness of memory encoding
has been the subject of considerable psychological research over the
last century (Kahana, 2012), yet only in the last decade or so have we
begun to uncover its physiological basis. In the laboratory, one can inves-
tigate the neural basis of goodness of encoding by recording brain signals
from participants while they engage in a learning task and then correlat-
ing specific features in the signal with subsequent memory performance
(Paller and Wagner, 2002).

Using this approach, often referred to as the subsequent memory
(SM) paradigm, functional magnetic resonance imaging (fMRI) studies
have identified several brain regions involved in memory encoding;
the left prefrontal cortex (Blumenfeld and Ranganath, 2007), posterior
parietal cortex (Uncapher and Wagner, 2009), medial temporal lobe
(Henson, 2005), and fusiform cortex are among those areasmost consis-
tently activated during successful encoding (Kim, 2011; Spaniol et al.,
2009). However, fMRI studies lack the temporal resolution required to

identify the temporal sequence of activations underlying memory
encoding. This, in turn, has limited our understanding of how these re-
gional activations interact to form functional memory encoding net-
works (Rugg et al., 2002).

To investigate the spatiotemporal properties of thismemory encoding
network, it is necessary to use a brain signal with millisecond temporal
resolution, such as intracranially recorded high-frequency activity
(HFA). HFA refers to fast fluctuations in neuro-electrophysiological re-
cordings that manifest as increases in spectral power at frequencies
above 60–70 Hz. The neural mechanism that gives rise to such fast activ-
ity is a topic of on-going research: HFA has been linked to asynchronous
signals related to increased multi-unit activity (Manning et al., 2009;
Miller et al., 2009; Milstein et al., 2009; Ray and Maunsell, 2011), the su-
perposition of multiple high-frequency oscillations (Crone et al., 2011;
Gaona et al., 2011), as well as a combination of these two processes
(Scheffer-Teixeira et al., 2013). Despite its unclear neural origin, however,
an increasing number of studies have leveraged HFA as a marker of
underlying neural activation (Crone et al., 2011; Lachaux et al., 2012),
similar to the blood-oxygen-level-dependent (BOLD) signal. Indeed,
HFA has been directly correlated with BOLD activity (Conner et al.,
2011; Mukamel et al., 2005), further suggesting that HFA represents a
marker of general neural activation.

As a marker of general activation, HFA has been used to functionally
map areas involved in motor activity (Leuthardt et al., 2007), auditory
perception (Crone et al., 2001), language processing (Sinai et al., 2005),
tactile sensation (Chang and Cheung, 2012), among others. Here, using
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intracranial recordings from neurosurgical patients in the SM paradigm,
we leverage HFA to functionally map areas of the brain responsible for
episodic memory formation. Whereas previous work has established
that HFA increases during successful memory encoding in the SM para-
digm (Sederberg et al., 2007a, 2007b), such work has interpreted HFA
strictly through an oscillatory framework. However, if HFA instead repre-
sents a more general metric of neural activation, the information con-
veyed by this signal should be reflected in the exact time and spatial
location in which it is active. By collecting data from a very large number
of patients (ninety-eight), we were able to overcome the limited spatial
sampling of human intracranial electrophysiology and use HFA to map
memory encoding in both space and time. This approach revealed a dy-
namic spatiotemporal activation of functional networks that mediate
encoding, as described in this report.

Material and methods

Participants

Participants withmedication-resistant epilepsy underwent a surgical
procedure in which grid, strip, and depth electrodes were implanted so
as to localize epileptogenic regions. Data were collected over a 14 year
period as part of a multi-center collaborationwith neurology and neuro-
surgery departments across the country. Our research protocol was ap-
proved by the institutional review board at each hospital and informed
consent was obtained from the participants and their guardians. Our
final participant pool consisted of 98 patients (86 left-language dominant
patients; see Supplementary Table S1).

Free recall task

Each patient participated in a delayed free-recall task. In each trial of
this task, participants are instructed to study a list of 15 or 20words and
are then asked to freely recall as many words as possible. Words were
presented sequentially and remained on the screen for 1600 ms,
followed by a randomly jittered 800–1200 ms blank inter-stimulus in-
terval (ISI). Immediately following the final word in each list, partici-
pants were given a distraction task (arithmetic problems; minimum
20 s) and were then given 45 s to recall as many words as possible
from the list in any order. Words that were presented during the
encoding period and successfully retrieved during the recall period
are considered successfully encoded (Paller and Wagner, 2002).

iEEG recordings

Clinical circumstances alone determined electrode number
and placement. Subdural (grids and strips) and depth contacts were
spaced 10 mm and 8 mm apart, respectively. iEEG was recorded using a
Bio-Logic, DeltaMed (Natus), Nicolet, Grass Telefactor, or Nihon-Kohden
EEG system. Depending on the amplifier and the discretion of the clinical
team, the signals were sampled at 200, 256, 400, 500, 512, 1000, 1024, or
2000 Hz. Signalswere converted to a bipolarmontage by differencing the
signals between each pair of immediately adjacent contacts on grid, strip,
and depth electrodes; the resulting bipolar signals were treated as new
virtual electrodes (henceforth referred to as electrodes throughout the
text), originating from the midpoint between each contact pair (Burke
et al., 2013). Signalswere re-sampled at 256 Hz; a notchfilterwas applied
at 60 Hz or 50 Hz. Analog pulses synchronized the electrophysiological
recordings with behavioral events. Contact localization was accom-
plished by co-registering the post-op CTs with the MRIs using FSL
Brain Extraction Tool (BET) and FLIRT software packages. The resulting
contact locations were mapped to both MNI space and Talairach space
using an indirect stereotactic technique. To identify whether a particu-
lar anatomical area exhibited task-related changes in power, we
grouped spatially similar electrodes from different participants by seg-
regating Talairach space into 53,471 overlapping 12.5 mm radius

spheres spaced every 3 mm. Only spherical regions that had electrodes
from 5 or more patients were included in analyses.

Spectral power

We convolved clips of iEEG (1000 ms before item onset to 2900 ms
after onset, plus a 1000 ms flanking buffer) with 30 complex valued
Morletwavelets (wave number 10)with center frequencies logarithmi-
cally spaced from 2 to 95 Hz (Addison, 2002). We squared and
log-transformed the wavelet convolutions, and then averaged the
resulting log-power traces into 500 ms epochs with 490 ms overlap,
yielding 341 total temporal epochs surrounding each word presenta-
tion. For the low-temporal resolution analysis in Figs. 1 and 2, we aver-
aged the continuous time power trace into a single time epoch from0 to
2000 ms after word presentation. Power was then averaged into a
high-frequency activity (HFA) band (64 to 95 Hz), which was used
to create the topographic activation maps. We z-transformed power
values separately for each session (Burke et al., 2013). For every
electrode and for every temporal epoch, we assessed the difference in
spectral power during memory formation by calculating a parametric
t-statistic on the distributions of average power values during success-
ful and unsuccessful encoding. In Figs. 1B-D and 4A, t-statistics compar-
ing power during successfully and unsuccessfully encoded words were
averaged across all electrodes from each patient in a particular region.

Statistical procedure

For the anatomical plots in Figs. 2 and 3, we assessed whether
changes in spectral power were significant across participants for a
given ROI or spherical voxel using a non-parametric permutation proce-
dure. We calculated a t-statistic on the distribution of log-power values
during successful and unsuccessful encoding during a single temporal
epoch for every electrode and fromeach participant.We then permuted
the labels for the conditions 10,000 times to generate a distribution
of 10,000 shuffled t-statistics. We averaged the true and permuted
t-statistics across all electrodes within each spherical region for each
participant. For each region, we then summed the true and permuted
averaged values across all participants (Burke et al., 2013; Sederberg
et al., 2007a). To generate a p-value for changes in spectral power for
a given region, we determined the position of the summed true
t-statistics in the distribution of summed permuted values. To correct
for multiple comparisons across space (Fig. 2) and time (Fig. 3), we
used a false discovery rate (FDR) procedure (Genovese et al., 2002,
q = 0.05).

Topographic plots

To plot spatial changes in spectral power, we identified spherical re-
gions that exhibited a statistically significant (FDR corrected) increase
or decrease in power across participants. At each spherical region, we
calculated the percentage of other regions within 12.5 mm that
exhibited identical encoding-related effects. We translated these per-
centages to color saturation and rendered these values onto cortical
and subcortical topographical plots using a standardMNI brain with in-
formation from the WFU PickAtlas toolbox (Maldjian et al., 2003).
Colored valueswere smoothed using a three-dimensional Gaussian ker-
nel (radius = 12.5 mm; σ = 3 mm). The maximal color saturation in
either direction corresponded to 50% of adjacent spherical regions. All
regions with fewer than five patients were colored black and were not
analyzed. Grayscale rendering in other regions represented the percent-
age of spherical regions surrounding a given location with at least
five patients, and thus represented regions that were analyzed but
that did not exhibit significant effects. For anatomical plots collapsed
across time (Figs. 2 and 5), only contiguously statistically significant
regions (spherical regions flanked by other significant regions in all
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