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We introduce here phase transfer entropy (Phase TE) as ameasure of directed connectivity among neuronal oscil-
lations. Phase TE quantifies the transfer entropy between phase time-series extracted from neuronal signals by
filtering for instance. To validate the measure, we used coupled Neuronal Mass Models to both evaluate the char-
acteristics of Phase TEand compare its performancewith that of a real-valuedTE implementation.We showed that
Phase TE detects the strength and direction of connectivity even in the presence of such amounts of noise and
linear mixing that typically characterize MEG and EEG recordings. Phase TE performed well across a wide range
of analysis lags and sample sizes. Comparisons between Phase TE and real-valued TE estimates showed that
Phase TE is more robust to nuisance parameters and considerably more efficient computationally. In addition,
Phase TE accurately untangled bidirectional frequency band specific interaction patterns that confounded real-
valued TE. Finally, we found that surrogate data can be used to construct appropriate null-hypothesis distributions
and to estimate statistical significance of Phase TE. These results hence suggest that Phase TE is well suited for the
estimation of directed phase-based connectivity in large-scale investigations of the human functional connectome.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Cognition arises from anatomically distributed neuronal processing
in functionally specialized brain regions. Identifying the mechanisms
that coordinate and integrate this processing within and between
neuronal assemblies is a critical step in understanding not only
normal cognitive functioning but also the putative links between
abnormal functioning and neuropsychiatric disorders. In humans,
neuronal activity can be recorded non-invasively with magneto- and
electroencephalography (MEG/EEG). The dynamics of neuronal oscil-
lations and inter-areal interactions can be identified from these data
to investigate whether they have a functional role in human cognition
and its abnormalities.

Neuronal oscillations as measured by MEG/EEG recordings are
thought to reflect the summated excitatory post-synaptic potentials
of tens of thousands of coherently active neurons (Lopes da Silva,
1991). Broadband MEG/EEG signals may be decomposed into nar-
rowband oscillations using spectral analysis with complex wavelets
or with real-valued filters and the Hilbert transform. Either ap-
proach reveals three distinct parameters that characterize neuronal
oscillations: frequency, amplitude and phase. Oscillation frequen-
cies are determined by the physiological time constants of the
relevant neuronal assemblies (Wang, 2010). Neuronal oscillations in dif-
ferent frequency bands are thought to support different cognitive
functions and are observed in different neuronal networks (Buzsáki

and Draguhn, 2004; Palva and Palva, 2007; Tallon-Baudry, 2011;
Womelsdorf et al., 2007).

Oscillation amplitudes are thought to reflect the extent of synchrony
of neurons in a local assembly (Varela and Lachaux, 2001). A number of
studies have indeed investigated oscillation amplitudes and observed
task-related amplitude or power fluctuations across specific frequency
bands (Hanslmayr et al., 2011; Tallon-Baudry and Bertrand, 1999;
Thut et al., 2006), highlighting the importance of oscillation amplitudes
as a marker of cognitive function. However, oscillation amplitudes
do not reveal the coordination or communication of neuronal activ-
ity across brain regions. In contrast, the phase of an oscillation,
which indicates the position of the signal within a given oscillation
cycle, has been shown to be critical in the coordination of anatom-
ically distributed processing (Cardin et al., 2009; Fries, 2005;
Lakatos et al., 2008; Singer, 1999; Womelsdorf et al., 2007). An ac-
cumulating amount of literature suggests that large-scale network
synchronization is a salient and functionally relevant aspect of
both brain activity and non-invasively recorded neuronal signals,
for instance among EEG sensors (Doesburg et al., 2008; Gruber and
Müller, 2005), MEG sensors (Palva et al., 2005) and cortical regions as
obtained using source reconstruction methods (Palva and Palva, 2012;
S. Palva et al., 2010). These results suggest that phase synchronization
in cortical networksmay coordinate communication across anatomically
distributed processing (J. M. Palva et al., 2010; Palva and Palva, 2011,
2012; Uhlhaas et al., 2009).

Phase synchronization and amplitude correlations are function-
ally independent phenomena (Bruns et al., 2000) and reveal distinct
neuronal networks (Freunberger et al., 2009; J. M. Palva et al., 2010).
Furthermore, the importance of phase information in neuronal
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processes is highlighted by studies showing that phase patterns can
code for more information than amplitude in both visual (Schyns
et al., 2011) and auditory (Ng et al., 2013) processing. This points
to phase as not only reflecting neuronal synchronization but also as
a carrier of information between neuronal assemblies. Such phase-
based information flow from one cortical area to another cannot be
evaluated using phase synchrony metrics (Rosenblum et al., 1996;
Stam et al., 2007; Vinck et al., 2011) which are inherently undirected.
To completely decipher the role of phase patterns in distributed neuro-
nal processing, connectomics analyses need to be carried out using
metrics that evaluate the influence of one signal's phase on another
signal's phase.

Informationflowbetween neuronal signals ismeasured usingdirect-
ed connectivity metrics that estimate the causal influence a neuronal
population exerts on another population. Methods used in neuroimag-
ing include Granger Causality (GC) (Granger, 1969; Wiener, 1956),
dynamic causal modeling (DCM) (Friston et al., 2003), and transfer
entropy (TE) (Schreiber, 2000). However, none of the currently
implemented metrics are appropriate for large-scale analyses of
phase-specific directed connectivity in electrophysiological recordings,
because connectomics analyses ofMEG/EEG signals impose specific con-
straints on connectivity metrics. First, the metric must be robust to nui-
sance factors inherent to MEG/EEG signals: noise and linear mixing.
External, biological, and instrument noise (Goldenholz et al., 2009) can
result both in reduced detection of connectivity (Li and Ouyang, 2010;
Nalatore et al., 2007) or in detection of false positives (Albo et al.,
2004). Instantaneous linear mixing is also present in both sensor and
source-space MEG/EEG signals because signal mixing at the sensor
level cannot be unambiguously disentangled by inverse modeling
(Belardinelli et al., 2012; Palva and Palva, 2012). Signal mixing can re-
sult in the detection of artificial connectivity between nearby
sources (Haufe et al., 2013; Palva and Palva, 2012) and always mir-
rors true interactions into spurious connectivity among adjacent re-
gions (Palva and Palva, 2012). Second, large-scale all-to-all network
analyses easily entail millions of estimations of a given metric. To be
realistically applicable in such conditions, metrics need to be com-
putationally efficient. Third, the number of a priori parameters
should be limited not only to reduce the cost of determining appro-
priate values for each signal pair but also to reduce the possibility of
erroneous results caused by inappropriate parameter choice
(Pereda et al., 2005). Fourth, it should be usable for detecting tran-
sient frequency band limited causal interactions from short data
samples. Finally, it should be possible to assess the statistical signif-
icance of metric values by constructing surrogates from the experi-
mental data.

According to Granger's definition of causality, a source signal has
a causal influence on a target signal if knowing the past of both signals
improves the prediction of the target's future compared to knowing
only the target's past. Although this definition makes no assumptions
on signal or interaction structure, Granger Causality (GC) metrics
(Bressler and Seth, 2011) that implement it in the time or the frequency
domain are largely based on autoregressivemodeling of signals and their
interactions. GC metrics, however, may be ill-suited to whole-brain net-
work type analyses of phase information transfer. First, while spectral
implementations of GC (Baccalá and Sameshima, 2001; Kaminski and
Blinowska, 1991) isolate frequency-specific interactions, these metrics
depend on both amplitude and phase signal components. Therefore,
they cannot identify phase-specific information flow. Second, GCmetrics
are sensitive to both noise (reduced sensitivity) and mixing (increased
number of false positives) (Nalatore et al., 2007; Nolte et al., 2010).

DCMextends the concepts of causal or directed connectivity to effec-
tive connectivity (Friston, 1994, 2011). Effective connectivity aims not
only at measuring the influence of one system on another but also at
reconstructing from neuronal data the underlying neurophysiological
influences between neuronal assemblies (Friston et al., 2003). As a
consequence, it requires not only the a priori definition of a set of

putative networks but also strong assumptions on the underlying neu-
ronal interaction mechanisms. DCM has been applied to phase interac-
tions (Penny et al., 2009) to identify whether synchronization
between selected brain areas results from mutual entrainment or a
driver-driven mechanism. So far, DCM has not been used for full-scale
connectomics analyses, partly because of the considerable complexity
in defining the a priori parameters and connectivity, and also because
of the high computational cost.

Transfer Entropy (TE) (Schreiber, 2000) is a reformulation of
Wiener's principle (Wiener, 1956) in the framework of information
theory (IT) (Shannon, 1948). Like GC, TE estimates whether including
the past of both source and target time-series influences the ability to
predict the future of the target time-series. However, as specified
above, GC metrics test whether the predictability of the target signal
is improved when both its past and the source's past are included com-
pared to when only the target's past is included. In contrast, TE com-
pares conditional probabilities using the Kullback–Leibler divergence.
If a signal X causes a signal Y, then the probability density of the future
of Y conditioned on its own past should be different from the probability
density of the future of Y conditioned on the pasts of both X and Y.
Furthermore, in contrast to GC metrics (or DCM), TE is model-free in
so far as it makes no assumptions on signal or interaction structure.
Despite these differences, it has been argued that TE and GC measure
the same underlying quantity (Barnett et al., 2009; Seghouane and
Amari, 2012).

In IT, the uncertainty of a variable X is quantified by Shannon Entropy
(X) = − ∑ xp(x)log p(x). Transfer Entropy from a signal X to a signal Y
can therefore also be expressed as the difference between the Shannon
Entropy of the present of Y (Y(t)) conditioned on its past (Y(t′)) and
the Shannon Entropy of the present of Y conditioned on both its past
and the past of X (X(t′)): TEX → Y = H(Y(t)|Y(t′)) − H(Y(t)|Y(t′),
X(t′)). From this definition, we can infer that TE cannot be negative:
conditioning the present of Y on an additional variable (Past of X in
addition to past of Y) cannot increase the uncertainty on the present
of Y. If there is no directed connectivity from X to Y, then taking into
account the past of X in addition to the past of Y will not reduce the
uncertainty in the present of Y: H(Y(t)|Y(t′)) = H(Y(t)|Y(t′), X(t′))
and thus TEX → Y = 0. TE can be understood as the reduction in the
amount of information (bits if a base 2 is used) necessary to encode
the present of Y if the past of X is used in addition to the past of Y. As a
consequence, in contrast to normalized GC metrics such as Partial
Directed Coherence (Baccalá and Sameshima, 2001) or Directed Transfer
Function (Kaminski and Blinowska, 1991), TE does not have ameaningful
upper bound (i.e., there is no value associated with ‘full’ connectivity). In-
deed, current practical TE implementations report statistical significance
values obtained from comparisons either between conditions or between
real and surrogate data rather than raw TE values (Lindner et al., 2011).

TE may be a good candidate metric for phase-based connectivity
analyses and has been used to detect directed interactions in both
sensor- and source-space broadband MEG/EEG signals (Vicente et al.,
2011;Wibral et al., 2011). However, computing TE from individual trials
requires large amounts of continuous data, which can be problematic
in the case of task-related, transient connectivity. To alleviate this issue,
TE can be accurately estimated from shorter time-series by computing
a single metric value from an ensemble of trials rather than a separate
value for each individual trial (Gómez-Herrero et al., 2010). IT-based
metrics can be applied successfully to phase time-series (Wilmer et al.,
2012), but current TE implementations (Lindner et al., 2011; Rutanen
and Gómez-Herrero, 2011) are designed for real-valued time-series
and reconstruct the underlying time-series state-space with nearest
neighbor search or time-delay embedding (Hlaváčková-Schindler et al.,
2007)) that are not directly applicable to circular variables. Most impor-
tantly, these methods are computationally costly and depend on several
a priori parameters to be defined for each signal pair.

A phase-based TE metric suitable for large-scale directed connec-
tivity analyses should not only detect directed phase coupling but
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