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The analysis of functional neuroimaging data often involves the simultaneous testing for activation at thousands
of voxels, leading to a massive multiple testing problem. This is true whether the data analyzed are time courses
observed at each voxel or a collection of summary statistics such as statistical parametric maps (SPMs). It is
known that classical multiplicity corrections become strongly conservative in the presence of a massive number
of tests. Somemore popular approaches for thresholding imaging data, such as the Benjamini–Hochberg step-up
procedure for false discovery rate control, tend to lose precision or powerwhen the assumption of independence
of the data does not hold. Bayesian approaches to large scale simultaneous inference also often rely on the
assumption of independence. We introduce a spatial dependence structure into a Bayesian testing model for
the analysis of SPMs. By using SPMs rather than the voxel time courses, much of the computational burden of
Bayesian analysis is mitigated. Increased power is demonstrated by using the dependence model to draw infer-
ence on a real dataset collected in a fMRI study of cognitive control. Themodel also is shown to lead to improved
identification of neural activation patterns known to be associated with eye movement tasks.

Published by Elsevier Inc.

Introduction

Functional neuroimaging provides a set of tools that record state-
related brain signals that are subsequently used to generate maps of
the neural circuitry activation associated with that state. The data
collected in such imaging studies are of massive scale, exacerbating
problems commonly encountered in statistical analyses. The structure
of these data requires hypothesis tests on a large number of parameters
simultaneously to infer the presence or absence of signal changes
throughout the brain. Testing thousands of locations simultaneously
greatly increases the chances of somedata spuriously exhibiting a signal
by random variation. Increased risk of false positives must be balanced
against overcorrection of the problem,which canmake it difficult to see
positive signals at all. Complicating the situation is the fact that imaging
data tend to be spatially correlated so that there is redundant informa-
tion between the locations being tested. Failure to account for this
dependence structure can have an adverse effect on the ability to detect
true signals. The need to balance a high risk for false positives with
sensitivity for signal detection then becomes a foremost concern, as
does the development of appropriate techniques for dealing with spa-
tial dependence.

A breakthrough in the statistical analysis of massive data sets came
when Benjamini and Hochberg (1995) introduced the false discovery
rate (FDR) along with a simple procedure for its control. Introduced to
the neuroscience community by Genovese et al. (2002), the procedure
controls the expected proportion of discoveries (hypothesis rejections)
that are false, as opposed to controlling the overall probability of com-
mitting any Type I error, as is accomplished with the strong family-
wise error rate. This makes it much easier to scale up to larger data
sets without becoming overly conservative. It should be noted, though,
that even this procedure will fail if thewrong null distribution is used to
calculate p-values. This can mean the difference between identifying
hundreds of interesting cases and none at all (Efron, 2007).

Methods have been proposed to remedy the null distribution
problem, including computationally-intense permutation tests (Holmes
et al., 1996; Nichols and Holmes, 2001) or empirical estimation of
the null distribution of transformed p-values (Efron, 2004). Image analy-
sis based on identifying clusters of activated voxels is introduced in
Forman et al. (1995). Thresholding via the expected Euler characteristic
of excursion sets is explored in Worsley (2003). Nichols and Hayasaka
(2003) compare permutation tests, Bonferroni, and random field theory
methods for controlling the family-wise error rate in functional neuroim-
aging. A conditional version of FDR, the positive false discovery rate, is in-
troduced in Storey (2003), along with a Bayesian interpretation of it. A
recent overview of techniques for large-scale testing is Efron (2010), in-
cluding thresholding via local false discovery rates and combining results
to draw inference on sets of observations with enrichment analysis.
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Bayesian statistics also providesmeans of dealingwith high through-
put data, affording researchers a way to richly model complex phenom-
ena while maintaining interpretability. Early work in the Bayesian
analysis of brain images appears in Genovese (2000), Gössl et al.
(2001), and Friston and Penny (2003). In the context of analyzing statis-
tical parametric maps (SPMs; Friston et al., 1995) in fMRI, Marchini and
Presanis (2004) remark that both Bayesian and FDR procedures share
the common characteristic of adapting to the features of the data, rather
than prescribing afixed threshold rule. They conclude, however, that the
use of Bayesian modeling is the most powerful approach for identifying
regions of activation when compared to thresholding via FDR control or
random field theory. More recent work includes Smith and Fahrmeir
(2007), who use a binaryMarkov random field to model spatial correla-
tion among the voxel-specific indicators of activation, and Bowman et al.
(2008), who take advantage of hierarchical structures to separate local
dependence and inter-regional correlation of predetermined regions of
interest. SPMs are treated as arising from cluster point processes with
both population-level and individual-level centers in Xu et al. (2009),
allowing for the estimation of the proportion of individuals exhibiting
activation at certain locations. Point processes are also used in Kang
et al. (2011) for Bayesian meta-analysis of locations of reported foci
from imaging studies and the variability among participants. A review
of Bayesian procedures in fMRI may be found in Woolrich (2012).

One of the biggest obstacles to Bayesian inference beingmore wide-
ly accepted in the neuroimaging community is the prohibitive compu-
tational burden it often imposes. This computing problem has become
one of the primary concerns for researchers who work with massive
data sets but still need reasonable computation time to get results.
Early attempts to deal with this in fMRI analysis are Penny et al. (2003)
and Penny et al. (2005), who use variational Bayes to obtain approxima-
tions to posterior distributions. Friston and Penny (2003) suggest using
empirical Bayesmethods as opposed to fully hierarchical Bayes to reduce
computational loads. Some empirical Bayes approaches to themore gen-
eral multiple testing problemmay be found in, e.g., Bogdan et al. (2008),
Muralidharan (2010), and Martin and Tokdar (2012). See Scott and
Berger (2010) for a discussion of conditions under which a multiplicity
adjustment can be induced with both empirical Bayes and hierarchical
Bayes.

Many of the Bayesian models currently found in the imaging litera-
ture rely onmodeling the entire time series collected at each voxel (e.g.
Fahrmeir and Gössl, 2002; Genovese, 2000; Gössl et al., 2001; Harrison
et al., 2008; Penny et al., 2003, 2005; Smith and Fahrmeir, 2007). The
Bayesian model presented in this article works directly with reduced
imaging data. In particular, each observation is a test statistic quantify-
ing the change in blood-oxygenation-level-dependent (BOLD) signal
over the course of an fMRI experiment, averaging over the temporal
dimension and thus vastly reducing the size of the data sets to be
analyzed. By applying Bayesian thresholding to SPMs, researchers gain
the added flexibility ofmodeling complex spatial and hierarchical struc-
tures, while maintaining reasonable computation times.

While somework has been done inmodeling the spatial structure of
fMRI data (e.g. Bowman et al., 2008; Gössl et al., 2001; Hartvig and
Jensen, 2000; Smith and Fahrmeir, 2007), much of thework thus far de-
veloped is based on the assumption of independence of the data. This
assumption can yield quite different results fromwhatwould otherwise
be obtained by accounting for the true dependence structure. Both FDR
and Bayesian procedures are influenced by the assumed correlation (or
lack thereof). While FDR control still works under positive regression
dependence with the original Benjamini–Hochberg procedure and
under arbitrary dependence structures using the algorithm introduced
by Benjamini and Yekutieli (2001), it still tends to lose accuracy under
dependence (Efron, 2007). Bayesian procedures may also suffer from
falsely assuming independence, becoming overly conservative when
modeling data that are truly dependent.

In this work we extend the Bayesian multiple testing model consid-
ered in Scott and Berger (2006) by modeling a continuous, underlying

signal that manifests in areas of the brain that are activated during a
stimulus. Spatial dependence is introduced via a Gaussian autore-
gressive model on the signal. This facilitates the sharing of information
between voxels. We demonstrate this model's ability to improve upon
detection of task-related activation. In particular, we show how the spa-
tial correlation induces the identification of larger clusters of activated
regions, which carries more physiological meaning than individually-
selected voxels.

The remainder of this paper is organized as follows: the Motivation
section introduces the data collected during an fMRI study of cognitive
control. This data set is used as motivation for our model. We review in
the Methods section the relevant background and necessary methods
for constructing our spatial Bayesian testing model and propose the
model itself. We perform a simulation study and present the results in
the Simulation study section, analyzing the performance of both the
Scott–Berger model and our own on simulated spatial data. In the
Results section,we show the results fromapplying themodel to the orig-
inal motivating data set. We compare the results to the Bayesian model
under an independence assumption as well as the results obtained
from false discovery rate control under an arbitrary dependence struc-
ture.We conclude in theDiscussion sectionwith a discussion of these re-
sults and commentary regarding future research directions.

Motivation

It is a common practice to analyze BOLD fMRI data using a voxelwise
general linear model (GLM) (Friston et al., 1995). This approachmodels
the MR signal at voxel j using a model of the form

y j ¼ Xβ j þ e j;

where yj = (yj,1,…,yj,T)T is the time course of MR signals at voxel j, X is
the T × p design matrix, βj is the p × 1 vector of regression coefficients,
and ej is the (often serially correlated) error in themeasurements. Infer-
ence then focuses on the coefficients corresponding to factors of inter-
est, such as the stimulus time course, to determine which voxels are
significantly associated with the experimental stimulus. Analyzing the
full time course at each voxel in a three-dimensional image can involve
processing tens of millions of observations, creating huge computation-
al demands (Friston and Penny, 2003; Smith and Fahrmeir, 2007).

Alternatively, researchers may choose to analyze fMRI data through
the use of statistical parametric maps. With this approach, each voxel is
assigned a single summary statistic quantifying the effect of the factor of
interest. Analysis then involves performing inference on the observed
statistic at each voxel, which has a known distribution under a null hy-
pothesis. One of the advantages of the SPM approach is that the data to
be processed are collapsed over the temporal dimension. The analysis is
thus computationally simpler than a full voxelwise GLM analysis.

The data we consider here are from a study by Camchong et al.
(2008) investigating the differences in neural activation patterns as-
sociatedwith cognitive control tasks that require generation of volition-
al saccade. The task involved alternating between blocks of fixation
(baseline) and the volitional saccade task known as an antisaccade.
Antisaccades require that participants inhibit a glance towards a prepo-
tent cue and generate one to themirror image location (opposite side of
the screen, same distance from center). During fixation blocks partici-
pants fixed gaze on a target point for a duration of 22.5 s. For the
antisaccade blocks, a single central target was presented for 1.7 s
followed by a cue presented 8° to the left or right for 1.25 s. The partic-
ipants were asked to move their eyes to the mirror image of the cue as
quickly and as accurately as possible. Each run consisted of nine fixation
periods alternated with eight antisaccade trials. Two blocked runs were
recorded for each participant.

Data were obtained using a GE Signa Horizon LX 1.5 T MRI scan-
ner. Each functional run collected T2

∗-weighted images with in-plane
resolution 3.75 × 3.75 mm, TE = 40 ms, TR = 1912 ms, 3.8 second
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