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23This study establishes that sparse canonical correlation analysis (SCCAN) identifies generalizable, structural
24MRI-derived cortical networks that relate to five distinct categories of cognition. We obtain multivariate
25psychometrics from the domain-specific sub-scales of the Philadelphia Brief Assessment of Cognition
26(PBAC). By using a training and separate testing stage, we find that PBAC-defined cognitive domains of language,
27visuospatial functioning, episodic memory, executive control, and social functioning correlate with unique and
28distributed areas of gray matter (GM). In contrast, a parallel univariate framework fails to identify, from the train-
29ing data, regions that are also significant in the left-out test dataset. The cohort includes164 patients with
30Alzheimer's disease, behavioral-variant frontotemporal dementia, semantic variant primary progressive aphasia,
31non-fluent/agrammatic primary progressive aphasia, or corticobasal syndrome. The analysis is implemented
32with open-source software for which we provide examples in the text. In conclusion, we show that multivariate
33techniques identify biologically-plausible brain regions supporting specific cognitive domains. The findings are
34identified in training data and confirmed in test data.
35© 2013 Published by Elsevier Inc.
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40 IntroductionQ5

41 Multivariate methods have advantages over univariate methods in
42 genomics (Hibar et al., 2011; Le Floch et al., 2012; Parkhomenko et al.,
43 2009), pattern recognition (Bishop, 1995; Roberts, 1997; Tipping, 2001)
44 and neuroimaging (De Martino et al., 2008; Fan et al., 2008; McIntosh
45 et al., 1996; Shamy et al., 2011; Tosun et al., 2012) due to the high dimen-
46 sionality and latent structurewithin these types of datasets. Various forms
47 ofmultivariate pattern analysis (MVPA) (Habeck et al., 2008; Hanke et al.,
48 2009; Kloeppel et al., 2008; Norman et al., 2006; Stonnington et al., 2010)
49 are frequently used in (often functional) magnetic resonance imaging
50 (MRI) studies to increase detection power (McIntosh et al., 1996;
51 Norman et al., 2006; O'Toole et al., 2007; Yamashita et al., 2008). Recently,
52 multivariate analysis of structural MRI has gained more attention
53 (Grosenick et al., 2013; Ryali et al., 2010; Sabuncu and Van Leemput,
54 2011). The large majority of these techniques relate a multivariate
55 pattern to a univariate outcome.
56 Modern datasets allow the opportunity to relate two independent
57 multivariate patterns. Neuroimaging andpsychometric batteries describe
58 cognition and the brain itself, respectively, with a matrix of quantitative
59 measurements. These types of datasets may be analyzed with methods
60 such as canonical correlation analysis (CCA) (Cherry, 1996) which is
61 closely related to multivariate regression and partial least squares (Sun
62 et al., 2009). Partial least squares (PLS), without sparseness, has been
63 used for several years in multivariate brain mapping studies (Addis

64et al., 2004; Chen et al., 2009; Leibovitch et al., 1999; Lin et al., 2003;
65McIntosh et al., 1996). Ridge and related penalties allow these methods
66to be applied even when the number of subjects is far fewer than the
67number of measurements (Nestor et al., 2002b). However, a caveat of
68these approaches is that the resulting solution vectors have global extent
69i.e. cover the entire brain with basis vectors that are non-zero and may
70have both positive and negative values. Traditional approaches are more
71clearly directional: a long neurological history is founded on relating
72behavioral deficits (losses) associated with destruction of brain tissue by
73stroke or related disorders. Perhaps the most famous example is H.M.
74This epilepsy patient lacked the ability to form newmemories after ante-
75rior temporal lobe resection. That is, loss of a specific part of the brain
76resulted in a specific deficit.
77Tools such as independent component analysis and principal com-
78ponents analysis (PCA) (Borroni et al., 2012; Comon, 1994; Mansfield
79et al., 1977; Shamy et al., 2011; Yeung and Ruzzo, 2001) increase
80power by efficiently describing data. However, PCA solutions provide
81signed basis vectors with global support and therefore lose the specificity
82of classical region of interest approaches or lesion studies. Sparse multi-
83variate methods have advantages of interpretability (Lee and Seung,
841999; Suykens et al., 2002) and, potentially, improved generalizability
85(Elad, 2006; Ryali et al., 2010; Yamashita et al., 2008; Zhang, 2008;
86Zibulevsky and Elad, 2010). In this paper, we use the cognitive variance
87induced by a spectrum of neurodegenerative conditions to examine
88how new, sparse multivariate analysis techniques more powerfully
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89 reveal relationships between brain and behavior. At the same time,
90 sparse methods achieve a degree of specificity that cannot naturally be
91 obtained by dimensionality reduction tools such as PCA (Lee and Seung,
92 1999). Here, we apply sparse multivariate methods to find cortical
93 networks that varywith cognition in amixed group composed of controls
94 and phenotypes related to Alzheimer's disease (AD) and frontotemporal
95 lobar degeneration (FTLD) pathology. An example of the difference
96 between sparse solutions and more traditional approaches appears in
97 Fig. 1.
98 Like AD, FTLD is a progressive neurodegenerative condition that is
99 accompanied by changes in behavior. Unlike AD, which typically
100 presents atrophy in the precuneus and temporal lobes, FTLD's pathology
101 occurs more frequently in frontal and temporal lobes (Rabinovici et al.,
102 2007; Whitwell et al., 2007). FTLD phenotypes include patients with a
103 disorder of social comportment and executive functioning (bvFTD); a
104 non-fluent/agrammatic variant of primary progressive aphasia (naPPA),
105 also known as progressive non-fluent aphasia; a semantic variant of
106 primary progressive aphasia (svPPA), also known as semantic dementia;
107 and corticobasal syndrome (CBS). A common test for cognitive deficits in
108 dementia is the Mini-Mental State Examination (Hill and Baeckman,
109 1995). However, the MMSE does not assess the behavioral and cognitive
110 deficits associated with FTLD (Hutchinson andMathias, 2007). Other
111 tests have been developed to screen and compare patients with
112 dementia syndromes, including the Frontal Assessment Battery
113 (Dubois et al., 2000) (FAB); the Addenbrooke Cognitive Examination
114 (Galton et al., 2005) (ACE); and the Montreal Cognitive Assessment
115 (MoCA) (Nasreddine et al., 2005).
116 The Philadelphia Brief Assessment of Cognition (Libon et al., 2007,
117 2011) (PBAC) provides an economical means to screen and assess im-
118 portant domains of cognitive and behavioral impairment associated
119 with AD and FTLD spectrum phenotypes. The PBAC requires about
120 12 min for administration and scoring. An important component of
121 the PBAC is the construction of sub-scales designed to assess specific
122 cognitive and behavioral/comportment deficits that typify AD and
123 FTLD syndromes, including executive/working memory, language,
124 visuospatial/constructional skills, verbal/visual episodic memory, and
125 behavior/social comportment. Dementia severity is assessed by summing
126 all PBAC sub-scales. Recent researchwith the PBAChas demonstrated that
127 AD and FTLD patients present with specific areas of impairment on
128 sub-scales that correspond to phenotypic syndromes (Libon et al.,
129 2011) i.e. clinical diagnosis.
130 The current study extends previous research with the PBAC (Libon
131 et al., 2011) by examining the gray matter neuroimaging correlates of
132 PBAC's cognitive and social measurements in a large number of AD
133 and FTLD patients. From a neurological perspective, the purpose, here,
134 is to use the variance within these patients to assess brain and behavior
135 relationships across multiple behavioral loci, as opposed to diagnosis.
136 From a technical perspective, the goal is to contrast univariate and
137 multivariate techniques. To test the hypothesis that PBAC indirectly

138measures the integrity of different cortical networks (versus individual
139voxels), we employ a new data-driven machine learning technique,
140sparse canonical correlation analysis for neuroimaging (SCCAN), to
141associate high-dimensional imaging measurements with the full infor-
142mation provided by a multivariate psychometric battery such as PBAC.
143Specifically, this approach allows an optimal weighting of psychometric
144sub-scales (as opposed to averaging their values) such that the relation-
145ship with neuroimaging is maximized. At the same time, SCCAN opti-
146mizes and selects regions of gray matter (GM) to maximize correlation
147with psychometrics. This results in a set of gray matter regions that
148may be interpreted as the network most-associated with the given
149psychometric domain. SCCAN previously identified covariation between
150GM and diffusion tensor imaging white matter (WM) changes that opti-
151mally discriminate between CSF- and autopsy-defined patients with AD
152and FTLD (Avants et al., 2010b). The purpose of the current research is to
153test the hypothesis that SCCAN may employ individual PBAC sub-scales
154to extract GM networks that are reproducibly associated with variation
155in cognition. This would provide additional criterion validity for both
156the PBAC and multivariate techniques such as SCCAN, in contrast to
157univariate techniques, and establish a novel strategy for performing
158multivariate analyses of brain and behavior.

159Methods

160An overview of our study is in Fig. 2.We first discuss the core dataset
161andmeasurements.We then discuss the PBAC and SCCANmethods.We
162proceed with an evaluation framework, including a comparison against
163a univariate approach.

164Patients

165Individuals participating in the current research were drawn from a
166corpus of 270 patients, as previously described (Libon et al., 2011).
167Dementia patients were evaluated by experienced behavioral neurolo-
168gists (AC, HBC, RGG, MG) and classified clinically on the basis of previ-
169ously published criteria (Gorno-Tempini et al., 2011; McKhann et al.,
1702001; Rascovsky et al., 2011). A research diagnosis was made on the
171basis of an independent review of a semi-structured history obtained
172from patients and their families and a detailed neurologic examination.
173At least two trained reviewers from a consensus committee (inter-rater
174reliability, r=0.91, pb0.001) confirmed patients' clinical diagnosis and
175the presence of a specific dementia syndrome involving AD or FTLD.
176Discrepancies were resolved based on group discussion and follow-up
177assessment. The PBAC was not used for the initial diagnosis of research
178participants.
179The clinical diagnosis of dementia was consistent with serum
180studies, clinical studies of cerebrospinal fluid (when available), clinical
181imaging studies such asMRI or CT, and functional neuroimaging studies
182such as SPECT or PET (these studies were not available to the consensus

Fig. 1. Sparse canonical correlation analysis solution vectors are overlaid on a slice of the brainwhere the brightness of the red-huedoverlay is related to the solution'sweightingat the local
voxel. A traditional canonical correlation analysis produces component vectors with global extent (to reader's far left). Sparse solutions (increasingly sparse to the reader's right) seek to
extract controllably focal information thereby, in the context of this paper, isolating “networks” of voxels that collectively relate to cognition. This enables component vectors to be more
easily interpreted in terms of traditional neuroscientific coordinate systems.
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