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Diffusion-weighted imaging (DWI), while giving rich information about brain circuitry, is often limited by insuf-
ficient spatial resolution and low signal-to-noise ratio (SNR). This paper describes an algorithm thatwill increase
the resolution of DW images beyond the scan resolution, allowing for a closer investigation offiber structures and
more accurate assessment of brain connectivity. The algorithm is capable of generating a dense vector-valued
field, consisting of diffusion data associated with the full set of diffusion-sensitizing gradients. The fundamental
premise is that, to best preserve information, interpolation should always be performed along axonal fibers. To
achieve this, at each spatial location, we probe neighboring voxels in various directions to gather diffusion infor-
mation for data interpolation. Based on thefiber orientation distribution function (ODF), directions that aremore
likely to be traversed byfiberswill be given greaterweights during interpolation and vice versa. This ensures that
data interpolation is only contributed by diffusion data coming from fibers that are aligned with a specific direc-
tion. This approach respects local fiber structures and prevents blurring resulting from averaging of data from
significantly misaligned fibers. Evaluations suggest that this algorithm yields results with significantly less
blocking artifacts, greater smoothness in anatomical structures, and markedly improved structural visibility.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted imaging (DWI) (Johansen-Berg and Behrens,
2009) is a key imaging technique for the investigation and characteriza-
tion of white matter pathways in the brain. It probes water diffusion in
various directions and at various diffusion scales to characterize micro-
structural compartments that are much smaller than the voxel size.
However, limited by today's imaging technique, the typical (2 mm)3

resolution achievable by DMRI is too coarse to sufficiently capture the
subtlety of neuronal axons, diameters of which range from 1 μm to
30 μm (Johansen-Berg and Behrens, 2009; Scherrer et al., 2012; Yap
and Shen, 2012a). This causes significant partial volume effect since
the signal collected at each voxel is likely to be due to multiple fascicles
that concurrently traverse the voxel. Acquiring images with resolution
higher than the typical (2 mm)3, however, is extremely difficult with-
out incurring unrealistic scan times and causing very low SNR due to
reduced voxel size (Scherrer et al., 2012). The impact of noise is aggra-
vated in high angular resolution diffusion imaging (HARDI), which
often requires prolonged echo time (TE) to achieve relatively high diffu-
sion weighting.

Increasing the resolution is not only important for registration,
segmentation, and tractography to be performed with greater accuracy,
but is also crucial for better visualization of anatomical structures to
identify possible neuropathologies. Solutions to achieve higher resolu-
tion include employing higher magnetic fields or stronger/faster

gradients, dedicated acquisition techniques (Heidemann et al., 2012;
Liu et al., 2004; Scherrer et al., 2012; Sotiropoulos et al., 2013), as well
as post-processing algorithms (Calamante et al., 2010; Gupta et al.,
2013; Manjón et al., 2010a; Nedjati-Gilani et al., 2008). In the current
work, we will take the post-processing approach, since this approach
does not rely on expensive scanner upgrades and complex time-
consuming sequences and can hence be applied to existing datawithout
requiring re-acquisition.

In this paper, we present a technique that will exploit the continuity
information given by local fiber architectures to increase the spatial res-
olution of diffusion-weighted data beyond the acquisition resolution.
Our algorithm will generate a spatially dense vector-valued field
consisting of diffusion data associated with the full set of diffusion-
sensitizing gradient directions. Similar to (Calamante et al., 2010),
our approach gains spatial resolution by using additional informa-
tion obtained from outside of each individual voxel. Dissimilar to
(Gupta et al., 2013; Nedjati-Gilani et al., 2008), our approach does
not assume any diffusionmodel and is applied directly to the DW im-
ages. Our approach does not require special acquisition techniques,
such as those proposed in (Greenspan, 2009; Greenspan et al.,
2002; Scherrer et al., 2012), does not need expensive scanner hard-
ware upgrades (to 7 T or 11 T), and can be applied to existing data.
The key highlights of our method are as follows:

1. Directional Profiling — Our approach uses a directional profiling
scheme to examine the neighborhood of each spatial location and
to gauge the probability of whether a specific direction is likely
to be traversed by fibers. The resulting directional probability
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distribution is then employed to encourage interpolation along
tangential and not orthogonal directions of axonal fibers. Unlike
the conventional trilinear interpolation, which does not take
into account the directional nature of DWI data, our approach
mimics DWI acquisition mechanism more closely by borrowing
information from different directions to reconstruct the DWI
data at each spatial location.

2. Microstructure-Preserving Smoothing—DWIdata are typically noisy
and need to be smoothed for increasing SNR. When smoothing, it is
important that the boundaries defining the spatial extent of individ-
ual structures are preserved. In contrast to many existing methods
that use inter-voxel gradient information to constrain smoothing to
relatively homogeneous regions, our method uses intra-voxel fiber
orientation distribution functions (ODFs) to guide smoothing. By
constraining interpolation along fiber streamlines, we preserve not
only the boundaries of the white matter, but also those between
fiber tracts within the white matter.

3. Complete DWI Data — Our approach generates a vector-valued field
of DWI data corresponding to the full set of diffusion-gradients and is
not limited to the white matter. Gray matter provides contextual in-
formation for the white matter and the availability of gray matter
data allows tissue segmentation based on diffusion data, such as
that done in (Liu et al., 2007), to be performed, providing comple-
mentary tissue contrast to tissue segmentation based on structural
MRI. The fact that our method produces a complete set of DWI data
also allows any diffusion models to be fitted to the resolution-
enhanced data for multifaceted analysis.

A preliminary version of this work was presented in our conference
paper (Yap and Shen, 2012a). Herein, we provide additional examples,
results, derivations, and insights that are not part of the conference
publication.

Paper organization

In the upcoming sections, we will first detail in the Materials and
methods section the key components of the proposed algorithm. We
will then demonstrate the effectiveness of the proposed algorithm in
the Results section with both in silico and in vivo data. Additional dis-
cussion is provided in the Discussion section before the paper is con-
cluded in the Conclusions section.

Material and methods

Datasets

Various datasets were acquired or generated for comprehensive
evaluation of the proposed method. They are described as follows.

In silico data
To quantitatively evaluate the accuracy of the proposed method, we

generated a 96 × 96 field of diffusion-weighted signal, forming a spiral
as shown in Fig. 2(A). Each voxelwithin the spiralwas simulated using a
tensor model with principal diffusivities λ1 = 1.5 × 10−3 mm2/s,
λ2 = λ3 =3 × 10−4 mm2/s, and diffusion weighting b = 2000 s/mm2.
The baseline non-diffusion-weighted signal S0 was set to 150. Diffusion-
weighted signal was sampled along each of the 120 gradient directions
obtained from the in vivo dataset (see the In vivo data section). The
background voxels that fall outside the spiral were generated via iso-
tropic diffusion with constant signal magnitude S0exp(−bλ), where
b = 2000 s/mm2, λ = 2.5 × 10−3 mm2/s, and S0 = 1000. Note that
these diffusion parameters were carefully chosen to mimic the
in vivo dataset described in the In vivo data section.

A cross phantom, shown in Fig. 2(C), was also used to evaluate the
proposed method in situations where fiber crossings exist. Using the
same diffusion parameters described above for the spiral, we used

diffusion tensors and their mixtures to generate a phantom of size
48 × 48 for evaluation. One group of tensors was oriented in the hori-
zontal direction and another group at an angle, i.e., 30°, 40°,…, 90°,
with the horizontal direction. At locations where these two groups
cross, a mixture of two tensors with equal volume fraction was used
to model the crossings.

In vivo data
Diffusion-weighted images for 4 adult subjects were acquired using

a Siemens 3 T TIM Trio MR scanner with an EPI sequence. Diffusion
gradients were applied in 120 non-collinear directions with diffusion
weighting b = 2000 s/mm2, repetition time (TR) = 12,400 ms, and
echo time (TE) = 116 ms. The imaging matrix was 128 × 128 with a
field of view (FOV) of 256 × 256 mm2. The slice thickness was 2 mm.
Six non-diffusion-sensitized images (b = 0 s/mm2) were acquired.
T1-weighted structural images with 1 mm isotropic resolution
were also acquired as anatomical references.

High-resolution in vivo data
For further evaluation, a set of high-resolution (1 mm)3 diffusion-

weighted imageswas acquired using the Siemens 3 T TIMTrioMR scan-
ner with the acquisition technique reported in (Porter and Heidemann,
2009). Diffusion gradients were applied in 42 non-collinear directions
with diffusion weighting b = 1000 s/mm2. The imaging matrix was
192 × 192 with a field of view of 192 × 192 mm2. The slice thickness
was 1 mm.

Neonatal data
Diffusion-weighted images of a neonate were acquired at approxi-

mately one month after birth. Diffusion gradients were applied in 42
non-collinear directions with diffusion weighting b = 1000 s/mm2,
TR = 7680 ms and TE = 82 ms. The scans covered the whole brain
with a resolution of 2 × 2 × 2 mm3.

Fiber-driven resolution enhancement

To increase spatial resolution, the image domain is uniformly divid-
ed using a grid with grid elements that are smaller than the acquisition
voxel size. The diffusion-weighted data for each of these grid elements
are then generated using the following steps: 1) Directional profiling
in a field of fiber ODFs; 2) Interpolation of diffusion-weighted data
based on the fiber orientation profile (generated in the previous step)
with bias correction (owing to the Rician distribution nature of themag-
nitude signal); and 3)Mean-shift refinement for recoveringmore struc-
tural details. Each step is detailed in the following sections.

Local fiber profiling
Interpolation along directions transversed by fibers preserves

structural boundaries. To determine the probability of whether a
grid element at spatial location x is traversed by fibers in directions
vk (k = 1, …, M), which are densely distributed on the unit sphere
and not necessarily antipodal symmetric, we profile for each k the field
of fiber ODFs p xi; vð Þjxi∈N xð Þf g along direction v = vk (see Fig. 1),
where N xð Þ is a neighborhood of voxels in the vicinity of x. Note that
xi is a point in space at which the diffusion-weighted signal is actually
acquired, and x is a point corresponding to a grid element of the high-
resolution grid, using which the resolution-enhanced data will be
reconstructed. The local fiber configuration at x is characterized by a
fiber orientation profile, which is a directional function that allows for
anisotropic interpolation of neighboring information to generate the
DWI data of the grid element at location x. It is determined as

p̂ x; vkð Þ ¼
X

xi∈N xð Þw xi; x; vkð Þp xi; vkð ÞX
xi∈N xð Þw xi;x; vkð Þ ¼

X
xi∈N xð Þ

ew xi;x; vkð Þp xi; vkð Þ;

ð1Þ
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