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In this paper, we revisit the problem of Bayesian model selection (BMS) at the group level. We originally
addressed this issue in Stephan et al. (2009), where models are treated as random effects that could differ
between subjects, with an unknown population distribution. Here, we extend this work, by (i) introducing
the Bayesian omnibus risk (BOR) as a measure of the statistical risk incurred when performing group BMS,
(ii) highlighting the difference between random effects BMS and classical random effects analyses of
parameter estimates, and (iii) addressing the problem of between group or condition model comparisons.
We address thefirst issue by quantifying the chance likelihood of apparent differences inmodel frequencies. This
leads to the notion of protected exceedance probabilities. The second issue arises when people want to ask
“whether a model parameter is zero or not” at the group level. Here, we provide guidance as to whether to
use a classical second-level analysis of parameter estimates, or random effects BMS. The third issue rests on
the evidence for a difference in model labels or frequencies across groups or conditions. Overall, we hope that
the material presented in this paper finesses the problems of group-level BMS in the analysis of neuroimaging
and behavioural data.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Any statistical measure of empirical evidence rests on some form of
model comparison. In a classical setting, one typically compares the null
with an alternative hypothesis, where the former is a model of how
chance could have generated the data. Theoretical results specify the
sense in which model comparison can be considered optimal. For
example, the Neyman–Pearson lemma essentially states that statistical
tests based on the likelihood ratio (such as a simple t-test) are the
most powerful, i.e., they have the best chance of detecting an effect
(see e.g., Casella and Berger, 2001). From this perspective, Bayesian
model comparison can be seen as a simple extension to likelihood
tests, in that it allows for the comparison of more than two models. In
fact, likelihood ratios are used in a Bayesian setting, under the name
of Bayes factors (Kass and Raftery, 1995). These are just the ratio of
experimental evidence in favour of one model relative to another.
Having said this, established classical and Bayesian techniques may
give different answers to the same question — a difference that has
entertained generations of statisticians (see e.g., Fienberg, 2006).

In this paper, we consider the problem of performing random
effects Bayesian model selection (BMS) at the group level. This was

originally addressed in Stephan et al. (2009), where models were
treated as random effects that could differ between subjects and
have a fixed (unknown) distribution in the population. The implicit
hierarchical model is then inverted using variational or sampling
techniques (see Penny et al., 2010), to provide conditional estimates
of the frequency with which any model prevails in the population.
This random effects BMS procedure complements fixed effects pro-
cedures that assume that subjects are sampled from a homogenous
population with one (unknown) model (cf. the log group Bayes factor
that sums log-evidences over subjects; Stephan et al., 2007). Stephan
et al. (2009) also introduced the notion of exceedance probability,
which measures how likely it is that any given model is more frequent
than all othermodels in the comparison set. These two summary statistics
typically constitute the results of random effects BMS (see, for example,
den Ouden et al., 2010).

While the random effects BMS procedure suggested in Stephan et al.
(2009) and Penny et al. (2010) has proven useful in practice— and has
been employed by more than hundred published studies to date, some
conceptual issues are still outstanding. In this paper, we extend the
approach described in Stephan et al. (2009) in three ways: (i) we
provide a complete picture of the statistical risk incurred when
performing group BMS, (ii) we examine the formal difference be-
tween random effects BMS and classical random effects analyses of
parameter estimates, when asking whether a particular parameter
is zero or not, and (iii) we address the problem of between-group
and between-condition comparisons.
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Section 2 revisits random effects BMS, providing a definition of the
null at the group level. This allows us to quantify the statistical risk in-
curred by performing randomeffects BMS, i.e. how likely it is that differ-
ences inmodel evidences are due to chance. En passant, we clarify the
interpretation of exceedance probabilities and provide guidance with
regard to summary statistics that should be reported when using ran-
dom effects BMS.

Section 3 addresses the difference between randomeffects BMS and
classical random effects analyses of parameter estimates. In princi-
ple, group effects can be assessed using a classical random effects
analysis of the parameter estimates across subjects (e.g., using t-
tests), or using random effects BMS (reduced versus full model). How-
ever, these approaches do not answer the same question (and therefore
may not give the same answer). Here, we explain the nature of this dif-
ference and identify the situations thatwould yield identical or different
conclusions.

Section 4 introduces a simple extension to the original framework
proposed in Stephan et al. (2009). In brief, we propose a test of
whether two (or more) groups of subjects come from the same
population. We also address the related issue of between condition
comparisons. The key idea behind these procedures is a generalization
of the intuition that underlies classical paired t-tests; i.e. one has to
quantify the evidence for a difference — as opposed to the difference
of evidences.

For all three issues, we use Monte-Carlo simulations to assess the
performance of random effects BMS in the context of key applications,
e.g. Dynamic Causal Modeling (see Daunizeau et al., 2011a for a recent
review).

On the statistical risk of group BMS

In this section, we first revisit the approach to random effects
BMS proposed in Stephan et al. (2009), recasting it as an extension
of Polya's urn model. This serves to identify the nature of the risk
associated with model selection. In brief, we focus on the risk of
stating that a given model is a better explanation for the data than
other models, given that chance could have favoured this particular
model. In turn, we propose a simple Bayesian “omnibus test”, to ex-
clude chance as a likely explanation for an apparent difference in
model frequencies.

Polya's urn model

The random effects BMS can be viewed as a simple extension of the
so-called Polya's urn model (see, e.g., Johnson and Kotz, 1977),
which we will revisit here. Consider an infinite urn, containing K dif-
ferent sorts of marbles. Let rk be the frequency of marbles of type
k ∈ [1,K] in the urn. The marble frequencies satisfy: 0 ≤ rk ≤ 1 and
1 = ∑ k = 1

K rk. Let us randomly draw n marbles from the urn. Let
mi be the outcome of the ith sample, where i ∈ [1,n]. The probability
of observing any given outcome mi is determined by the respective
frequency rk of each type of marble and has the following multinomial
distribution:

pðmi rkj Þ ¼ ∏
K

k¼1
rk

mik

mik ¼ 1 if k ¼ l
0 otherwise

∀k∈ 1;K½ �
� ð1Þ

wheremi ∈ [0,1] is a one-in-K vector, i.e. the index l ∈ [1,K] of the non-
zero entry encodes themarble's type. Given a set of n observedmarbles,
one can ask questions about the unknown marble frequencies in the
urn. Within a Bayesian approach, Eq. (1) expresses the likelihood func-
tion, which is completed with priors p(r|H) on marble frequencies to
form a posterior density over marble frequencies p(r|m,H), as

follows:

pðr m;Hj Þ ¼ pðr Hj Þ
pðm Hj Þ∏

n

i¼1
pðmi rkj Þ

¼ pðr Hj Þ
pðm Hj Þ ∏

K

k¼1
rk

Xn
i¼1

mik

pðm Hj Þ ¼
Z

pðr Hj Þ∏
K

k¼1
rk

Xn
i¼1

mik

dr

ð2Þ

where p(m|H) is the (Polya's urn) model evidence, under the prior as-
sumption H. A “reasonable” prior assumption H1 is that, a priori, the
urn is expected to be unbiased, i.e.: E[rk|H1] = 1/K. This prior assump-
tion can be captured using the following Dirichlet probability density
function:

pðr H1j Þ ¼ Γ Kα0ð Þ
Γ α0ð ÞK ∏

K

k¼1
rk

α0−1 ð3Þ

where Γ is the gamma function and α0 is the so-called concentration
parameter (it controls the prior variance of marble frequencies). Usu-
ally, one invokes uninformative (flat) priors on marble frequencies,
by setting α0 = 1. Under H1, one can explain differences in the ob-
served frequencies of marbles with a difference in the “true” (but un-
known) frequencies of marbles. This will be expressed in the
posterior distribution p(r|m, H1), which will deviate from the prior,
i.e.: E[rk|m, H1] ≠ 1/K. One can also derive the so-called exceedance
probability (EP) φk — the probability that the kth marble type is
more frequent in the urn than any other type (given observedmarbles):
φk ¼ P rk≥rk′≠k m;H1j Þ�

. As with marble frequencies, the EPs satisfy:
0 ≤ φk ≤ 1 and 1 = ∑ k = 1

K φk. They express a degree of (posterior)
confidence on the difference between marble frequencies; we will
discuss EPs in detail below. At this point, it suffices to say that all
conclusions drawn from these sufficient statistics are valid, under
H1.

However, one may want to consider another prior assumption,
which arises at the infinite concentration limit, i.e.: H1 →α0→∞ H0 .
Under the null H0, the marble frequencies are all equal to each other,
i.e.: rk = 1/K. This is typically encoded through a delta-Dirac distribu-
tion, as follows:

pðr H0j Þ ¼ 1 if rk ¼ 1=K ∀k∈ 1;K½ �
0 otherwise

:

�
ð4Þ

Eq. (4) means thatH0 differs fromH1 in that the actual marble fre-
quencies r are fixed (their prior variance is zero). Under the null, any
apparent difference in the frequencies is simply due to chance. This
makes the null a candidate explanation for the observed marbles.
This is important, because it means that any inference based upon
sufficient statistics derived under H1 implicitly assumes that the
null is a (comparatively) less plausible assumption. Crucially, should
the null turn out to be a viable assumption, this would invalidate the
conclusions drawn under H1. In other terms, the risk we take in rely-
ing upon the posterior density p(r|m, H1) can be defined in terms of
the probability Po of having erroneously chosen H1 against H0, given
the observedmarblesm. This is simply the posterior probability of H0

versus H1 (see Daunizeau et al., 2011b for a formal decision theoretic
derivation of model selection error risk). Under flat priors on H, Po is
given by:

Po ¼
1

1þ pðm H1j Þ
p m H0j Þ:ð

ð5Þ
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