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27Brain connectivity can be represented by a network that enables the comparison of the different patterns of struc-
28tural and functional connectivity among individuals. In the literature, two levels of statistical analysis have been con-
29sidered in comparing brain connectivity across groups and subjects: 1) the global comparison where a single
30measure that summarizes the information of each brain is used in a statistical test; 2) the local analysis where a sin-
31gle test is performed either for each node/connection which implies a multiplicity correction, or for each group of
32nodes/connections where each subset is summarized by one single test in order to reduce the number of tests to
33avoid a penalizing multiplicity correction. We comment on the different levels of analysis and present some
34methods that have been proposed at each scale. We highlight as well the possible factors that could influence the
35statistical results and the questions that have to be addressed in such an analysis.
36© 2013 Published by Elsevier Inc.
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66 Introduction

67 The human brain, made up of more than 100 billion neurons that
68 communicate through trillions of connections, is certainly the most
69 complex organ in the human body. This ensemble of tissues, neurons,
70 glial cells, axons and synapses produces our every thought, action,
71 memory, feeling and experience (Philips, 2006). How the different
72 components of the human brain interact is still unknown. Since
73 Ramón y Cajal (1899) discovered that neurons are discrete unitary
74 entities that conduct electrical signals in only one direction from den-
75 drites (input) to the axon (output), neuroscientists have tried to shed
76 light on the underlying substrate of the structurally integrated and
77 functionally specialized regions of the human brain, with the final
78 scope of understanding brain organization and function. Aware of
79 these attempts, and of the challenge posed by formulating a compre-
80 hensive map of the anatomical and functional substrate of the human
81 brain, Hagmann (2005) and Sporns et al. (2005) proposed a concep-
82 tual framework in which the entire brain structural connectivity
83 was modeled as a network: the connectome.
84 Due to the innovations inmedical imaging and image analysis, and in
85 combinationwith the quickly developing fields of engineering and image
86 processing, the determination of the interregional brain connectome
87 became feasible. This helped to create a better understanding of the
88 human brain, to quantify rates of variabilities, and to associate defined al-
89 terations in structural substrate with brain functional deficits and psychi-
90 atric diseases in a non-invasive manner. This relatively simple way of
91 modeling the brain connectivity has been successfully used in the study
92 of diseases such as schizophrenia (Bassett et al., 2008; Fornito et al.,
93 2011; Liu et al., 2008), Alzheimer's disease (He et al., 2008), Parkinson's
94 disease (Wu et al., 2009) and attention-deficit hyperactivity disorder
95 (ADHD) (Sato et al., 2012; Wang et al., 2009b), among others.
96 Macroscopic brain connectivity can be derived either frommorpho-
97 logical diffusion or functional neuroimaging data (e.g., Achard et al.,
98 2006; Cammoun et al., 2012; Daducci et al., 2012; Friston, 2011;
99 Hagmann et al., 2010a; Liu et al., 2008; van den Heuvel and
100 Hulsoff-Pol, 2010). Sporns (2007) writes that “brain connectivity refers
101 to a pattern of anatomical links (anatomical connectivity), of statistical
102 dependencies (functional connectivity) or of causal interactions (effec-
103 tive connectivity) between distinct units within a nervous system.”
104 These pairwise relations can be represented either by a connection ma-
105 trix A, where each cell aij of the matrix represents a certain measure of
106 connectivity between two regions of interests (ROIs) i and j of the
107 brain or, equivalently, by a network (in the graph theory sense). This
108 is an abstract representation and a simplification of the complexity of
109 the real brain network (Kaiser, 2011). The brain network is a weighted
110 graph G(V, E,W (E)) with |V| nodes that correspond to the ROIs, and |E|
111 connections (edges) between the nodes and a weight function that as-
112 sociate to each existing edge e in E, a univariate (or multivariate)
113 weight.
114 Investigating differences between connectomes of different groups
115 of individuals using connectivity matrices or networks is very attractive
116 and challenging (vanWijk et al., 2010). It raises also a number of prob-
117 lems that investigators need tobe aware of. When summary measures
118 like global clustering coefficient or global efficiency are used, little in-
119 sight is gained on the details of potential pathological processes, and
120 local phenomena are diluted in the global mean. Exploring in isolation
121 specific connections on the other hand, requires a detailed understand-
122 ing of the underlying phenomena. Such knowledge is rarely present in
123 neuroscience and does not really require the connectome framework.
124 Finally, exploring blindly all the connections of a network in order to
125 identify potential connectivity differences is problematic since most of
126 the time the number of tests to perform is high, which decreases the
127 power of tests after the multiplicity correction.
128 The first level considered in brain connectivity studies and com-
129 parisons is the global level (Bassett and Bullmore, 2009). A single
130 summary statistic is extracted for each subject and a t-test is usually

131performed to assess the between groups effect, afterremoving the
132influence of nuisance covariables. In such studies, several tests are
133usually performed on the same dataset using different network mea-
134sures as summary statistics. Despite this multiplicity, no correction is
135applied in order to avoid theincrease of the rate of false discoveries.
136The first attempt to address local statistical analysis in brain net-
137works using a specially-dedicated method, is the method of Zalesky
138et al. (2010a) called the Network Based Statistic which proceeds by
139supra-thresholding to identify significantly differentiated connected
140components between groups. Other statistical methods have been pro-
141posed to asses local brain connectivity differences such as the Spatial
142Pairwise Clustering (Zalesky et al., 2012a), the statistical parametric
143network (Ginestet and Simmons, 2011) and the Sub-Network Based
144Analysis (Meskaldji et al., 2011a). These strategies have, however,
145some limitations as we will show in this review. In these approaches,
146the multiplicity correction cannot be avoided.
147An alternative way to assess differences between groups through
148connectomes is to adopt a classification approach. The key idea is to ex-
149tract discriminative features from a training dataset, in order to classify
150new subjects (Robinson et al., 2010). The classification approach has a
151completely different framework from the testing approach. Following
152the Neyman and Pearson formulation of testing, the first concern is to
153build tests or multiple testing procedures which make “not too many”
154false discoveries. In this review, we do not discuss the classification ap-
155proach. However, we refer the reader to the following references:
156Robinson et al. (2010), Richiardi et al. (2011, in press).
157This review is organized as follows. In the section Graph theory and
158brain networks, we review topological networkmeasures andmethods
159for comparing connectomes at the global level. In the section Local
160analysis, we review the statistical methods proposed in the literature
161at the local level with a short review of the most important aspects of
162multiple testing. We present as well in the Local analysis section, an
163adaptive method that exploits the positive dependence in brain net-
164works, which control the rate of false discoveries at the level of connec-
165tions/nodes. Finally, we discuss in the section Discussion: From raw
166data to brain graphs: what can influence the statistical inference?, the
167factors that could influence the statistical inference.

168Graph theory and brain networks

169Topological network measures

170In recent years, modeling the human brain as a network has become
171popular as it is considered as a relatively simple way to characterize the
172complexity of the human brain connectivity and activity. The connectome
173and the graph theory frameworks have been increasingly used in the
174study of human neuroimaging data, especially in the case of neuropsychi-
175atric disorders, as both are thought to formalize questions relative to pos-
176sible alterations and evolution of the brain connectivity architecture.
177Indeed, freely available software packages have been introduced to ana-
178lyze network topology (e.g. Brain Connectivity Toolbox (Rubinov and
179Sporns, 2010); eConnectome (He et al., 2011); NetworkX (http://
180networkx.lanl.gov/overview.html); GAT (Hosseini et al., 2012); igraph
181(http://igraph.sourceforge.net/) and Brainwaver (http://cran.r-project.
182org)). From this point of view, it seems therefore natural to compare
183groups of subjects, e.g. healthy versus pathological subjects, in terms of
184variation of quantitative measures which describe some brain network
185topological features. It has been shown, for example, that structural and
186functional brain networks share certain properties of complex networks
187such as small-world topology, highly connected hubs and modularity
188(Bullmore and Sporns, 2009).
189A wide range of network measures is commonly used to character-
190ize the global organizational principles and the local network properties
191of the large-scale brain networks. However, the link between graph
192properties and the brain's ability to segregate, integrate, modularize,
193process or transmit information is completely unknown.
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