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High density diffuse optical tomography (HD-DOT) is a noninvasive neuroimaging modality with moderate
spatial resolution and localization accuracy. Due to portability and wear-ability advantages, HD-DOT has
the potential to be used in populations that are not amenable to functional magnetic resonance imaging
(fMRI), such as hospitalized patients and young children. However, whereas the use of event-related stimuli
designs, general linear model (GLM) analysis, and imaging statistics are standardized and routine with fMRI,
such tools are not yet common practice in HD-DOT. In this paper we adapt and optimize fundamental ele-
ments of fMRI analysis for application to HD-DOT. We show the use of event-related protocols and GLM
de-convolution analysis in un-mixing multi-stimuli event-related HD-DOT data. Statistical parametric map-
ping (SPM) in the framework of a general linear model is developed considering the temporal and spatial
characteristics of HD-DOT data. The statistical analysis utilizes a random field noise model that incorporates
estimates of the local temporal and spatial correlations of the GLM residuals. The multiple-comparison prob-
lem is addressed using a cluster analysis based on non-stationary Gaussian random field theory. These anal-
ysis tools provide access to a wide range of experimental designs necessary for the study of the complex brain
functions. In addition, they provide a foundation for understanding and interpreting HD-DOT results with
quantitative estimates for the statistical significance of detected activation foci.

© 2013 Published by Elsevier Inc.

Introduction

With recent improvements in spatial resolution and brain specific-
ity, along with the advantages of non-ionizing portable and wearable
technology, high density diffuse optical tomography (HD-DOT) has
become a promising neuroimaging modality for translation to clinical
settings and cognitive studies in child brain development (Bluestone
et al., 2001; Boas et al., 2004a, 2004b; Eggebrecht et al., 2012; Gibson
et al., 2005, 2006; Habermehl et al., 2012; Joseph et al., 2006; White
and Culver, 2010a, 2010b; Zeff et al., 2007). However, thus far
HD-DOT reports have lacked event-related designs and accurate sta-
tistical tools that are common to fMRI and crucial for imaging com-
plex cognitive processes. In this work we focus on developing these
analytical tools for HD-DOT. To validate the methods we acquired
and analyzed event-related data in several healthy adult volunteers.

In order to extract the brain response to a given task using simple
block averaging, task blocks need to be well separated in time
(Bandettini et al., 1993; Blamire et al., 1992; Fransson et al., 1999).
Blocked experimental designs suffer from predictable task timing and

often lead to bored subjects and difficulties in maintenance of attention
to task. Rapid “event-related” designs provide faster andmore complex
naturalistic paradigms (Friston et al., 1995). Developed within the sta-
tistical framework of a general linear model (GLM), event-related de-
signs incorporate linear models of the response function into the
analysis of time-series data, and enable un-mixing of the response to
fast and event-related stimuli (Clark et al., 1997; Dale and Buckner,
1997; Friston et al., 1998; Josephs et al., 1997; Zarahn et al., 1997).

While some papers have implemented selected portions of statisti-
cal parametric mapping (SPM) techniques in the framework of GLM,
none have done so in a comprehensive manner. For instance, some
near infrared spectroscopy (NIRS) studies have implemented GLM to
de-convolve overlapping responses (Abdelnour and Huppert, 2009;
Ciftci et al., 2008; Cohen-Adad et al., 2007; Hu et al., 2010; Koh et al.,
2007; Plichta et al., 2006, 2007; Schroeter et al., 2004; Ye et al., 2009;
Zhang et al., 2005). Some have evaluated Bonferroni corrections to the
multiple comparison problem when setting thresholds for statistical
significance (Hu et al., 2010; Plichta et al., 2006, 2007), and some have
implemented sophisticated SPM approaches with special consider-
ations for spatially interpolated NIRS data (Ye et al., 2009). However
these NIRS studies have not addressed HD-DOT data and imaging.

HD-DOT uses a dense array of optodes (compared to NIRS) which
results in higher spatial resolution and its overlapping measurements
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results in spatially smoother data. With a forward model that de-
scribes the light propagation in the underlying tissue, HD-DOT recon-
structs three-dimensional images of hemodynamic activity (Boas and
Dale, 2005; Boas et al., 2004b; Custo et al., 2010; Eggebrecht et al.,
2012; Heiskala et al., 2009; Koch et al., 2010; Zeff et al., 2007). Recently
with a quantitative voxel-wise comparison against fMRI, it is shown
that this technique can provide lateral resolution at the gyral-level
and localization errors on the order of ~5 mm (Eggebrecht et al.,
2012). With these advances, HD-DOT comes closer to representing
dense and continuous imaging fields and closer to resembling fMRI
data (Eggebrecht et al., 2012; Habermehl et al., 2012). The improved
image quality in turn motivates the use of fMRI based statistical ap-
proaches. Here we adapt statistical methods from standard fMRI anal-
yses and evaluate the underlying assumptions in the context of
HD-DOT imaging. In particular we evaluate local temporal and spatial
autocorrelation structures of random fields from the residuals of a
GLM. We implement a cluster analysis based on random field theory
(RFT) to control the false positive rate in the statistical maps. To ac-
count for the potential spatial variance in the HD-DOT point spread
function we use a non-stationary RFT approach.

The body of this paper is arranged as follows:We begin by describing
the data acquisition including the imaging array, subjects, and experi-
mental designs. We then outline the preprocessing, and SPM procedure
including; linearmodeling of data, dealingwith the temporal autocorre-
lations, and addressing the multiple comparison problem. We then
present empirical in vivo results of functional event-related HD-DOT
data acquired during visual activation in human adults. Finally we eval-
uate the performance of the GLM-SPM tools.

Methods

Subjects and experimental protocol

Six healthy right-handed subjects (age range: 17–30 years) were
scanned. The researchwas approved by the Human Research Protection
Office at Washington University School of Medicine. Subjects were
seated in an adjustable chair in a sound-isolated room facing a 19-inch
LCD screen at a viewing distance of 75 cm. All measurements were
done with a continuous wave high-density DOT system. The imaging
cap with 24 sources (flashing 750 nm and 850 nm LEDs) and 28 detec-
tors was placed on the back of subject's head. For more details on the
HD-DOT instrumentation see references Eggebrecht et al. (2012)
and Zeff et al. (2007). The visual stimulus consisted of left and right
flickering checkerboard wedges (flickering at 10 Hz), presented in a
counterbalanced random order. The block design consisted of 10 blocks
(5 left, 5 right)with an inter stimulus interval of 30 s. In the event design
15 left and 15 right stimuli were presented with inter stimulus intervals
that were randomly distributed between 2 and 15 s. In both designs
stimuli duration was 5 s. There was a 30 second long fixation at the be-
ginning of stimulus presentation. All subjects had been previously
scanned with MRI (Siemens Trio (Erlangen, Germany) 3 T scanner) for
another study. Their anatomical T1-weighted MPRAGE (echo time
(TE) = 3.13 ms, repetition time (TR) = 2400 ms, flip angle = 8°,
1 × 1 × 1 mm isotropic voxels) and T2-weighted (TE = 84 ms, flip
angle = 120°, 1 × 1 × 4 mm voxels) images were used to generate
subject-specific head models.

HD-DOT preprocessing

Raw detector data were decoded to source-detector pair data, and
converted to log-ratio to mean values. The data then were band-pass
filtered (0.02 Hz–0.25 Hz) to remove long-term trends and pulse ar-
tifacts. All signals from the first-nearest neighbor channels were aver-
aged to create a measure of the superficial hemodynamics. This
nuisance signal was removed by linear regression from all channels.
Additionally, data were down-sampled to 1 Hz. We used the subjects'

T1- and T2-weighted images to segment their heads into five putative
different tissue types, including scalp/skin, skull, CSF, white, and gray
matter and created the subjects' head meshes (Eggebrecht et al.,
2012). Light propagation inside the mesh was modeled using the dif-
fusion approximation and a sensitivity matrix was generated using
the finite-element modeling software (NIRFAST). The sensitivity ma-
trix was inverted and smoothed with a Gaussian kernel, and used to
reconstruct absorption coefficient changes for each wavelength
(750 nm and 850 nm). The field of view (FOV) for a typical subject
was a cube containing 26 × 41 × 69 voxels, covering occipital cortex,
with isometric voxel size of 2 × 2 × 2 mm3. Relative changes in the
concentrations of oxygenated (HbO), deoxygenated (HbR), and total
hemoglobin (HbT) were obtained from the absorption coefficient
changes by the spectral decomposition of the extinction coefficients
of HbO and HbR at these two wavelengths (Fig. 1).

For visualization of results, we up-sampled the images to 1 mm3.
Volumetric activations are overlaid on subject-specific T1-weighted
images (with masking skin/scalp and skull). For the cortical surface
representation of results all volumetric activation data are mapped
onto the subject-specific cortical surface in the Caret 5.65 software
package (Van Essen et al., 2001) (http://brainvis.wustl.edu/wiki/
index.php/Caret:About).

General linear model

The general linear model expresses hemodynamic changes at each
voxel of the brain as a linear combination of independent variables
(i.e. response to different stimuli) and an error term (Friston et al.,
1995). Mathematically the GLM is presented by Eq. (1):

Y ¼ Xβ þ e ð1Þ
The data Y ∈ RT × N are arranged in a matrix that has the dimen-

sions of time (with T elements) and position (a three dimensional
space indexed by a single index variable n with N elements). The de-
signmatrix X ∈ RT × S has S columns that each represents themodeled
response to one of the S different stimuli or conditions. The spatial pat-
terns of responses are embedded in β ∈ RS × N. The error term
e ∈ RT × N has the same dimension as the data, and is assumed to be
zero-mean Gaussian noise (the assumption of independent errors)
with variancematrixΣe = σ2I (σ2 is variance in the error and I is iden-
tity matrix). With these assumptions the method of least squares pro-
duces the minimum variance unbiased estimate of the β parameters
(Gauss–Markov theorem):

β̂ ¼ XtX
� �−

XtY ð2Þ

The parameter estimate variance is given by:

Var ct β̂
n o

¼ σ̂ 2ct XtX
� �−

c ð3Þ

In Eq. (3), c is the contrast vectorwhich extracts the parameter of in-
terest from β̂ , and has the same length as the number of rows of β̂ (e.g.
to extract the response to the first condition/stimulus type, c = [1 0],
and to extract the response to second condition/stimulus c = [0 1] is
used, respectively).

With the above assumptions, under the null hypothesis (no acti-
vation, H0 : ctβ̂ ¼ 0), the following statistic,

t ¼ ct β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2ct XtX

� �−c
q ð4Þ

has a t-distribution with degrees of freedom equal to T–S (Moore and
McCabe, 2002).
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