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22Near-infrared spectroscopy (NIRS) has become a relevant research tool in neuroscience. In special populations
23such as infants and for special tasks such as walking, NIRS has asserted itself as a low resolution functional
24imaging technique which profits from its ease of application, portability and the option to co-register other
25neurophysiological and behavioral data in a ‘near natural’ environment. For clinical use in neurology this
26translates into the option to provide a bed-side oximeter for the brain, broadly available at comparatively
27low costs. However, while some potential for routine brain monitoring during cardiac and vascular surgery
28and in neonatology has been established, NIRS is largely unknown to clinical neurologists. The article discusses
29some of the reasons for this lack of use in clinical neurology. Research using NIRS in three major neurologic
30diseases (cerebrovascular disease, epilepsy and headache) is reviewed. Additionally the potential to exploit
31the established position of NIRS as a functional imaging tool with regard to clinical questions such as preoper-
32ative functional assessment and neurorehabilitation is discussed.
33© 2013 Published by Elsevier Inc.
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61 Introduction

62 Amethodology providing continuous readings of cerebral oxygen-
63 ation, applicable non-invasively at the bed side and relying on com-
64 paratively inexpensive technology should have overcome the stage of
65 a ‘promising tool’ with regard to its routine application in neurology.
66 However, over 35 years after its first description (Jobsis, 1977) and
67 25 years after the development of the first commercial monitors (Cope
68 and Delpy, 1988), Near-infrared spectroscopy (NIRS) is largely unknown
69 to clinicians even in specialized neurological departments.
70 Ironically one reason for this apparent discrepancy may be related
71 to the versatility of the method. The list of parameters derived from
72 changes in optical properties of brain tissue is long (Table 1). It
73 reaches from the most straight forward assessment of concentration
74 changes in oxygenated, deoxygenated and total hemoglobin (HbO,
75 HbR, HbT) over the less reliable estimation of redox-changes in cyto-
76 chromeoxidase (cyt-ox) (Tisdall et al., 2007) to a number of derivations
77 yielding oxygenation indices such as regional oxygen saturation (rSaO2)
78 or the tissue oxygenation index (TOI) (Al-Rawi and Kirkpatrick,
79 2006; Pocivalnik et al., 2011). Application of an optical contrast agent
80 (indocyanine green, ICG) extends the spectrum to an index of perfusion
81 (Terborg et al., 2004), also targeted byDCS (diffuse correlation spectros-
82 copy) amethodology sharingmany features with NIRS (Durduran et al.,
83 2004). Finally some groups still advocate the sensitivity of non-invasive
84 approaches to very fast changes in optical properties in response to neu-
85 ronal signaling (Gratton and Fabiani, 2010). The cornucopia of parame-
86 ters may be scientifically rewarding but strongly limits comparability
87 between studies from different groups and is unsuited for clinical use.
88 This may hold in particular for neurology, a field where diagnosis and
89 therapy evaluation strongly rely on conflating the patient's history
90 and neurological statuswith the results of a large number of established
91 instrument-based results.
92 A second issue hampering the introduction of NIRS in clinical neu-
93 rology is the fact that in adults at best half of the cerebral cortex can
94 be interrogated. Mesial, insular and even cortex in deep sulci plus
95 all subcortical and infratentorial parts of the brain cannot be reached
96 (Fig. 1). Interestingly clinical use and its critical evaluation may be
97 most advanced in brain-monitoring during cardiac and carotid artery
98 surgery (Pennekamp et al., 2009; Vohra et al., 2009; Zheng et al.,
99 2012) and in critical care settings (Smith, 2011). In this field NIRS

100studies largely rely on a ‘pars pro toto’ approach, correlating drops
101in cerebral oxygenation measured in a quite limited area of the cere-
102bral cortex to the occurrence of any post-interventional neurological
103deficit. On the contrary neurological differential diagnosis of diseases
104affecting the central nervous system (CNS) usually aims at identifying
105a more or less circumscribed localization of the lesion or dysfunction
106to then differentiate between the underlying pathology.
107A third challenge to the establishment of any novel methodology for
108routine clinical use is the necessity to demonstrate a specific advantage
109over existing diagnostic procedures. Listing the most common diseases

Table 1t1:1

t1:2 List of the most commonly reported parameters in studies using NIRS (near-infrared spectroscopy) and their potential in clinical neurology. Though the assessment is based on a
t1:3 similar principle, values may substantially differ (Pocivalnik et al., 2011). Results may support a somewhat greater sensitivity to deep layers (Liebert et al., 2006).

t1:4 Abbreviation Parameter Assessment principle Potential for clinical use Limitations

t1:5 HbO Oxygenated hemoglobin
concentration

Direct assessment by modified Beer–
Lambert approach; dual-wavelength
approach sufficient

Changes in cerebral hemodynamics and
blood oxygenation

No absolute values; combination of HbO/
HbR/HbT responses may result in 12
different response patternst1:6 HbR Deoxygenated hemoglobin

concentration
t1:7 HbT Total Hb concentration

(=HbO + HbR)
t1:8 HbD Hemoglobin difference

(=HbO − HbR)
Simple derivation Reported in few publications

t1:9 Cyt-ox Cytochrome-oxidase redox
state

Requires ≥3 wavelengths Marker for cellular oxygenation and
energy metabolism

Low concentration, liable to crosstalk
From Hb changes

t1:10 rSaO2 Regional oxygen saturation Requires multi-distance Single value to assess oxygenation,
reported by many studies on
intraoperative/ICU applications

Strong assumptions on background
optical propertiesat1:11 TOI Tissue oxygenation index

t1:12 BFIICG Blood flow index I.V. application of indocyanine green
(ICG); bolus renders transit time based
on absorption or fluorescence;

Perfusion in analogy to
perfusion-weighted MRI

Requires I.V. bolus

t1:13 ICGfluo Fluorescence after injection Perfusion and potentially extravasation
in superficial tumors or inflammation

I.V. application, complex modeling of
fluorescence in layered tissue, as yet only
feasibility studyb

t1:14 EROS ‘Event related optical signals’ —
fast optical changes

High frequency sampling mandatory;
mostly reported for frequency domain
monitors

May be sensitive to neuronal changes
related to electrophysiological signal

A number of groups doubt transcranial
detectability

a Note that rSaO2 and TOI are provided by different commercial monitors.t1:15
b Single feasibility study with a time resolved NIRS system.t1:16

Fig. 1. Coronal slice illustrating brain structures accessible to NIRS. Neocortex at the
brain's surface can be interrogated by NIRS (pink ribbon). Note that besides deep
brain structures (e.g. basal ganglia, BG) and white matter (WM) substantial neocortical
areas cannot be reliably reached (TL: temporal lobe; IC: insular cortex; MC: mesial
cortex in the interhemispheric cleft; dsC: cortex in deep sulci). The brain areas reached
account to roughly half of the neocortex. Infratentorial structures such as the cerebellum
and brainstem cannot be assessed.
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