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Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new
insights into the microstructural organization of white matter that are not available with conventional MRI
techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex
set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings.
Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for
multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to
increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety
of artifacts, including eddy-current and motion artifacts, “venetian blind” artifacts, as well as slice-wise
and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the
processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on
a voxel level, but our own experiments show that these methods often do not fully detect and eliminate
certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion
model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC
measure in the DTI domain that employs the entropy of the regional distribution of the principal directions
(PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant
to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively
uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC
measure is intended to complement the existing set of QC procedures by detecting and correcting residual
artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction
artifacts. Experiments show that our automatic method can reliably detect and potentially correct such
artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further
indicate the usefulness of this method for general quality assessment in DTI studies.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion magnetic resonance imaging has become an increasingly
relevant neuroimaging technique because of its ability to investigate
microstructural features of white matter non-invasively and in-vivo,
particularly in studies of normal, developing, aging and pathological

human brain (Bach et al., 2011; Hsu et al., 2008; Johansen-Berg and
Rushworth, 2009; Le Bihan et al., 1986; Solano-Castiella et al., 2010;
Unrath et al., 2010). Within the brain, diffusion of water molecules
inside the tissues differs from “Brownianmotion” and reflects interactions
of molecules with many obstacles such as cell membranes, fibers and
macro molecules. Diffusion Tensor Imaging (DTI) measures the rate
and directionality of water displacement in various brain tissues via a
Gaussian model of diffusion. The tensor in DTI is estimated using a set
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of diffusion sensitizedMR images, known asDiffusionWeighted Images
(DWIs), by using several (at least six) non-collinear diffusion sensitizing
gradients (Basser et al., 1994). Several tensor properties are commonly
employed to analyze DTI, such as Fractional Anisotropy (FA) and PD,
which characterize the shape and the principal direction of the resulting
tensor. As of late, plenty of research has been conducted regarding
diffusion tensor models resulting in several useful estimation
techniques such as linear least square (LLS), non-linear least
square, weighted least square (WLS) based on the log Rician
probability distribution (Salvador et al., 2005) and Maximum
Likelihood estimate using log-likelihood function of the Rician
distribution (Fillard et al., 2007). While the use of the tensor
model is currently predominant in clinical applications of diffusion
MRI, DTI is unable to characterize fiber crossing within a voxel.
Consequently, the need for investigating the non-tensor models
has increased particularly for tractography (Basser et al., 2000;
Mori et al., 1999) and fiber-driven analysis.

As theoretical work characterizing DTI grows, it is essential to
increase their practical usability from a clinical environment perspective
(Pierpaoli andBasser, 1996; Tournier et al., 2011). Inherently, DWI images
suffer from diverse artifacts as a result of limitation or malfunction in the
hardware or software of the scanning device. In addition, severe artifacts
may also originate from physiological noise such as bulk head motion or
respiratory motion. These difficulties cause propagated bias of diffusion
tensor property estimation. Thus, it is essential to establish appropriate
image quality assessment techniques on both DWI and DTI data.

DWI-based image quality control techniques can detect and
potentially correct artifacts such as inter-slice abrupt differences in
signal intensities, venetian-blind (Liu et al., 2010), eddy current
induced distortion (Andersson and Skare, 2002; Reese et al., 2003),
susceptibility (Andersson et al., 2003; Jezzard et al., 1999) and
drop-out signal intensities (Tournier et al., 2011) which can be caused
by mechanical vibration artifact (Gallichan et al., 2010) (see Fig. 1).
The standard approach to correct drop-out, venetian-blind and
inter-slice change based artifacts is to exclude the affected DWI
images prior to the DTI estimation (Liu et al., 2010). It is noteworthy
that such correction via exclusion of DWIs can lead to a biased
estimate of the resulting tensor's properties and principal direction.

In order to reduce the influence of artifacts and the inherent
noisy characteristics in DWIs, methods for denoising DWI or DTI data
have been proposed (Tristán-Vega and Aja-Fernández, 2010) based
on joint information from all DWIs and the correlation between them
to filter the DWI images. Another possibility is to apply regularization
of tensor images, in addition to estimating the tensor model (Wang
et al., 2004). Alternatively, a maximum-a-posterior framework estima-
tion can be used to couple tensor estimation and regularization to bet-
ter capture information from noisy images (Fillard et al., 2007).
Additionally, methods have been proposed that detect and reduce the
influence of outliers as part of an iterative DTI estimation process that
gives lower weights to artifactual data (Chang et al., 2005).

While these approaches are applicable in many general DTI
settings, they may fail for more systematic artifacts resulting from
mechanical vibration. These artifacts are known to occur mostly in
some 3 Tesla Siemens scanners for subjects weighing less than
30 kg. Although the pre-processing hardware fix described in
Liu and Liu (2011) corrects some of these artifacts, a substantial
number of subjects remain artifactual. Strong diffusion gradients
cause low-frequency mechanical resonance of the diffusion MRI
system (Hiltunen et al., 2006; Mukherjee et al., 2008). This low
frequency mechanical resonance leads to uneven distribution of
vibrations within parts of the scanner and patient table, and hence
uneven brain tissue movement. These vibration artifacts present as
an area of signal loss in the DWIs and a subsequent directional bias
in the estimated tensors. The directional bias is visually evident in
color-coded FA images with local orientation of the principal tensor
direction (see Fig. 2). The vibration artifact is hypothesized to be
mainly due to substantial local echo shift in k-space, which exceeds
the k-space window (Mohammadi et al., 2011). The movement-
related signal-loss occurs most likely due to physical resonance of
the scanner with longer time vibration when it is excited by strong
left-right gradients (Gallichan et al., 2010). Therefore, not only the
quality of DWIs is affected, but also the diffusion-relatedmeasurements
are disrupted.

As a post-processing step of quality control to correct vibration
artifacts, an improved DTI estimation approach was proposed
(Gallichan et al., 2010). A co-regressor is used based on an empirical
approximation to influence the artifacts in diffusion-tensor fit.
This approximation assumes that the artifacts result from diffusion
gradients in the left–right direction and also using the co-regressor
restricts performance of correcting these artifacts. More recently, as
a systematic technique for correcting these artifacts (Mohammadi
et al., 2011), an approach was proposed using phase-encoding (PE)
reversal by combining two images with reversed PE direction, each
weighted by a function of its local tensor fit error. The disadvantage of
this approach is that systematic correction causes limitations and
difficulties during image acquisition which makes it less applicable.

In this work, we investigate artifacts that introduce a directional
bias in the measured principal direction of diffusion (see Figs. 2
and 3), called dominant direction artifacts in the remainder of this
paper. Upon visual inspection, such artifacts may be apparent in
DWIs as local signal intensity drop-out or may not be apparent
in DWIs. We propose a novel DT-MRI quality control measure to
detect these artifacts by assessing the orientational bias of the
diffusion tensor model and refurbishing DWIs using an entropy-
based measurement on the orientational distribution of principal
directions. The main difference between our approach and other
vibration correction approaches (Gallichan et al., 2010; Mohammadi
et al., 2011) is that these approaches adjust major vibration-induced
drop-out signal intensities in DWIs. However, we show that these
artifacts may not be visually apparent in DWIs. Thus, it would be
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Fig. 1. Examples of intensity artifacts detected. (a) An electromagnetic interference-like artifact, (b) severe signal loss in the anterior and middle regions, (c) Venetian blind artifact,
(d) inter-slice and intra-slice intensity artifact and (e) checkerboard artifact.
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