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Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory,
behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to
task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional
connectivity analyses. The obtainedmodels of connectivity incorporate themultivariate interactions between all
brain regions simultaneously, which will result in a more accurate representation of the connectome than the
ones available with standard bivariate methods. Additionally the models can be applied to decode or predict
the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction
accuracy provides a measure of the integration between a brain region and other regions in its network, as
well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article
describes a method for learning multivariate models of connectivity. The method is applied in the non-
parametric prediction accuracy, influence, and reproducibility–resampling (NPAIRS) framework, to study the
regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribu-
tion of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we
illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental
parameters and assessing the quality of functional neuroimaging data.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Multivariate supervised learning methods, commonly referred to
as multi-voxel pattern analysis (MVPA), have shown a remarkable
ability to decode externally driven sensory, behavioral, and cognitive
states from functional neuroimaging data (Chu et al., 2011a; Cox and
Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2006; Kamitani and
Tong, 2005; LaConte et al., 2005; Mitchell et al., 2004; Mourão-
Miranda et al., 2005; Polyn et al., 2005; Strother et al., 2002). Although
these techniques are typically applied to task-based experimental
parameters, they can also be used to model intrinsic brain activity
(Chu et al., 2011b; Friston, 1994; Friston and Frith, 1993). In this setting,
a connectivitymodel is learned fromdistributed statistical relationships,
and thus is capable of decoding (predicting) the intrinsic activity of a
brain region.

A multivariate regression connectivity (MRC) model relates the
activity measured in a brain region to a linear (or non-linear) combina-
tion of the activity measured in every other region of the brain (Friston,

1994; Friston and Frith, 1993). Typically, the number of brain regions to
be modeled is much greater than the number of observations, resulting
in an underdetermined systemof linear equations that cannot be solved
uniquely. Methods for dealing with this include dimensionality reduc-
tion (Friston, 1994; Friston and Frith, 1993), feature selection, regulari-
zation based algorithms (Ryali et al., 2011; Varoquaux et al., 2010), or
frameworks such as statistical learning theory (Chu et al., 2011b). The
result is a network model of connectivity that accounts for the complex
interactions between all modeled brain regions simultaneously, which
is a more accurate representation of the connectome than achieved
with standard bivariate connectivity measures (Varoquaux et al.,
2010). Further, the learned models can be applied to independently
acquired data to decode a region's intrinsic activity from these new
data (Chu et al., 2011b; Varoquaux et al., 2010).

Although the reproducibility of intrinsic functional connectivity
(iFC) has been examined (Braun et al., 2012; Shehzad et al., 2009;
Wang et al., 2011; Zuo et al., 2010a, 2010b), the ability of iFC models
to predict intrinsic brain activity has been largely overlooked (notable
exceptions include Chu et al. (2011b) and Varoquaux et al. (2010)).
The ability to make accurate predictions is a fundamental criterion for
scientific models. Poor prediction accuracy might indicate that
a model is missing an important source of information about the
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phenomena being modeled (i.e. unmodeled variance), makes invalid
assumptions, or is inconsistent over time. In the case of connectivity
models of brain architecture, unmodeled variance would indicate that
there is a component of local intrinsic activity that is not present in
other regions of the brain, and the modeled brain region exhibits a
degree of segregation from the rest of the brain. As such, prediction
accuracy provides a means to evaluate the amount of information that
exists in the brain about a specific brain region, and quantifies the
degree to which a brain region is integrated with its iFC network
(Kjems et al., 2002; Marrelec et al., 2008; Tononi, 1998). This is in con-
trast to centrality measures, which assess functional integration of a
brain region based on its number of connections with other regions
(Zuo et al., 2011). Similarly prediction accuracy can be used as a quan-
titative metric to evaluate the degree to which iFC models differ over
time, between subjects, and with experimental paradigms (i.e. task vs.
rest). Poor prediction accuracy may also reflect the validity of the
modeling framework, and as such when combined with reproducibility
provides a data driven approach that can be used to compare the
modeling frameworks as well as acquisition and analysis parameters
(Chu et al., 2011b; Kjems et al., 2002; LaConte et al., 2003; Shaw et al.,
2003; Strother et al., 2002). Additionally the predictive quality of
models of iFC provides a mechanism for real-time tracking of iFC for
neurofeedback and brain–computer-interface applications (LaConte,
2011; LaConte et al., 2007).

This article describes multivariate prediction analysis of intrinsic
brain activity measured from functional magnetic resonance imaging
(fMRI) data. We have used support vector regression (SVR) (Drucker
et al., 1997; Müller et al., 1997; Vapnik et al., 1996), but other multi-
variate regression methods, such as PLS, ridge regression, Lasso, and
elastic-net, could also be used.We discuss the links between prediction
accuracy and integration (Kjems et al., 2002; Marrelec et al., 2008;
Tononi, 1998), as well as between reproducibility and signal-to-noise
ratio (SNR) of the regression models (Strother et al., 2002). Regional
variations in prediction accuracy and reproducibility were investigated
across anatomical and functional subdivisions of the brain. The impacts
of subject age, sex andheadmotionon thesemetricswere also evaluated.
Additionally, we evaluated the impact of scan length on model perfor-
mance. This paper is methodologically related to previous work (Chu
et al., 2011a; Friston, 1994; Friston and Frith, 1993). Here, we provide
an extensive characterizationof regional variation in predictivemodeling
of intrinsic brain activity using the NPAIRS framework. In addition, we
demonstrate the utility of parcellation to reduce the number of regres-
sion models required to perform these analyses and facilitate the ana-
tomical interpretability of results.

Methods

Subjects and scanning

Thirty-three healthy volunteers (age: 19–48, mean 27.2, std. dev.
7.9, 16 females) participated in accordance with Baylor College of
Medicine Institutional Review Board policy. To qualify for inclusion,
subjects were required to be between the ages of 18 and 65, have no
contraindications for MRI, to be medication free, and have no current
or past neurological or psychiatric conditions.

Subjectswere scanned on a 3 T SiemensMagnetomTIMTrio scanner
(Siemens Medical Solutions USA; Malvern PA, USA) using a 12-channel
head matrix coil. The scanning procedure began with a high-resolution
anatomic scan followed by two separate 10-minute resting state fMRI
runs (Rest 1 and Rest 2). Anatomic images were acquired at 1 ×
1 × 1 mm3 resolution with a 3D T1-weighted magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) sequence (Mugler and
Brookman, 1990) using: field of view (FOV) 256 × 256 × 176 mm3,
repetition time (TR) 2600 ms, echo time (TE) 3.02 ms, inversion recov-
ery time (TI) 900 ms, flip angle (FA) 8°, phase partial Fourier 6/8, slice
partial Fourier 7/8, GRAPPA factor of 2 with 24 reference lines, and

bandwidth 130 Hz/pixel. Resting state fMRI data were acquired with
a blood oxygenation level dependent (BOLD) contrast weighted
gradient-recalled echo-planar-imaging sequence (EPI). Twenty-nine
3.6-mm thick interleaved oblique slices were acquired with a 10% slice
gap and the parameters: TR 1750 ms, TE 30 ms, FA 90°, 64 × 64matrix,
220-mm FOV, in-plane resolution 3.45 × 3.45 mm2, anterior-to-
posterior phase encoding and bandwidth 2442 Hz/pixel. Each resting-
state scan consisted of 343 functional volumes, lasting approximately
10 min. For resting state functional scans, subjects were instructed to
passively view a fixation cross while clearing their minds of any specific
thoughts.

This dataset has been made available for non-commercial use
through the International Neuroimaging Data-Sharing Initiative
(http://fcon_1000.projects.nitrc.org/).

Data preprocessing

Data preprocessing was accomplished using a combination of
tools from AFNI (Cox, 1996) and FSL (Smith et al., 2004). Anatomical
images were skull stripped, segmented, and then registered to
MNI152 space using a two-step procedure, which first calculates a
linear registration (FLIRT; Jenkinson et al., 2002) that is subsequently
refined using a non-linear registration (FNIRT). Conservative white
matter (WM) and cerebrospinal fluid (CSF) masks were derived
from the results of segmentation (Zhang et al., 2001) by applying
probability ≥0.99 thresholds to WM and CSF probability maps.
These maps were down sampled to 4 mm isotropic resolution and
subsequently dilated by 1 voxel to further prevent overlap with
gray matter.

Functional image preprocessing began with slice timing correction
and then motion correction. The mean image from each scan was
calculated and used to co-register each functional scan to the corre-
sponding anatomic image. Next nuisance variable regression was
performed by regressing out WM and CSF time series, the six motion
parameters calculated frommotion correction, and a 4th order polyno-
mial to account for baseline drifts (Friston et al., 1996; Lund et al., 2006).
The functional to anatomical and anatomical to MNI152 transforma-
tions calculated for each dataset were concatenated to construct a
functional to MNI152 transform. This transformwas applied to the cor-
responding functional images to write them into MNI space at 4 mm
isotropic resolution. The resulting images were smoothed using a
6-mm full width at half maximum (FWHM) Gaussian kernel.

ROI generation

This analysis used 179 ROIs specified by a 2-level temporal corre-
lation based whole brain functional parcellation (Craddock et al.,
2012) of resting state data from 198 subjects from the Cambridge
dataset publically available from the 1000 functional connectome
project (Biswal et al., 2010). The independent dataset was used to
exclude any bias that might be introduced by generating ROIs from the
same data thatwere analyzed. The Cambridge datasetwas preprocessed
identically to our experimental data, except that it was band-pass
filtered (0.001 Hz b f b 0.08 Hz) after nuisance variable regression as
in Craddock et al. (2012). The parcellation procedure produced 196
ROIs, which were reduced to 179 ROIs after excluding regions in the
cerebellum and brain stem (Fig. 1A).

Multivariate model of intrinsic brain function

The application of support vector regression to model intrinsic
brain function follows the analysis of task-based fMRI experiments,
in which the goal is to learn the relationship between a vector of
features (from each brain image) and scalar labels (of the task condi-
tions) (Cox and Savoy, 2003; LaConte et al., 2005; Mourão-Miranda
et al., 2005). The crux of the approach used here is that the labels
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