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Intelligent behavior is not a one-dimensional phenomenon. Individual differences inhumancognitive abilitiesmight
be therefore described by a ‘cognitive manifold’ of intercorrelated tests from partially independent domains of gen-
eral intelligence and executive functions. However, the relationship between these individual differences and brain
morphology is not yet fully understood. Here we take a multivariate approach to analyzing covariations across in-
dividuals in two feature spaces: the low-dimensional space of cognitive ability subtests and the high-dimensional
spaceof local graymatter volumeobtained fromvoxel-basedmorphometry. By exploiting apartial least squares cor-
relation framework in a large sample of 286 healthy children and adolescents, we identify directions of maximum
covariance betweenboth spaces in terms of latent variablemodeling.Weobtain an orthogonal set of latent variables
representing commonalities in the brain–behavior system,which emphasize specific neuronal networks involved in
cognitive ability differences. We further explore the early lifespan maturation of the covariance between cognitive
abilities and local gray matter volume. The dominant latent variable revealed positive weights across widespread
gray matter regions (in the brain domain) and the strongest weights for parents' ratings of children's executive
function (in the cognitive domain). The obtained latent variables for brain and cognitive abilities exhibitedmoderate
correlations of 0.46–0.6. Moreover, the multivariate modeling revealed indications for a heterochronic formation of
the association as a process of brain maturation across different age groups.

© 2013 Elsevier Inc. All rights reserved.

Introduction

A major goal of human development research is to identify the
functional and structural processes that are predictive of individual
cognitive skills (Tau and Peterson, 2010). Magnetic Resonance Imag-
ing (MRI) and computational morphometry have become invaluable
tools for in-vivo exploration of the underlying changes in healthy
brain maturation (Mietchen and Gaser, 2009; Toga and Thompson,
2003). On the one hand, research focused on commonalities shared
by children with typical pediatric development has revealed that
the general course of brain structure development is distinct in differ-
ent brain regions and tissue types (Giedd and Rapoport, 2010;
Lenroot and Giedd, 2006). Studies observed inverted-U shaped and
curvilinear trajectories in gray matter volume (GMV) Gogtay et al.,
2004; Lenroot et al., 2007 and cortical thickness (CT) (Shaw, 2008;
Shaw et al., 2006; Sowell et al., 2004), and rather continuous in-
creases in white matter volume (WMV) into early adulthood (Ostby
et al., 2009; Tamnes et al., 2010c). In addition, trajectories of brain
maturation exhibited a substantial sexual dimorphism with delayed
peaks in male GMV (Lenroot et al., 2007) and CT (Shaw, 2008)

development. On the other hand, there is a growing interest in the in-
dividual variability of structural maturational patterns and its relation
to differences in cognitive abilities and behavior during adulthood
(Deary et al., 2010; Kanai and Rees, 2011). The general intelligence
factor, i.e. the g-factor, possesses impressive predictive validity for
lifespan educational and occupational success, as well as social mobil-
ity (Deary, 2012). However, the causes and neurodevelopmental
mechanisms underlying individual differences of stable cognitive
abilities in adults are still unresolved. Studies exploring general intel-
ligence in relation to brain morphology have been conducted in chil-
dren and adolescents (Karama et al., 2009, 2011; Lange et al., 2010;
Luders et al., 2011; Shaw et al., 2006; Tamnes et al., 2011; Wilke et
al., 2003) and younger and middle-aged adults (Haier et al., 2004;
Luders et al., 2007, 2008, 2009b; Narr et al., 2007; Tamnes et al.,
2011). In addition, recent studies have focused on more specific cog-
nitive abilities and skills in the verbal domain (Porter et al., 2011;
Ramsden et al., 2011), working memory (Østby et al., 2011, 2012),
and executive functions (Tamnes et al., 2010c). A broad set of cogni-
tive processes contributes to what is commonly referred to as execu-
tive functions. Among others, this includes planning, working
memory, problem solving and inhibition of responses (Chan et al.,
2008). There is neuropsychological and non-clinical evidence for a re-
lation of executive functions to general intelligence (Ackerman et al.,
2005; Ardila et al., 2000; Friedman et al., 2008; Salthouse et al., 2003;
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Shelton et al., 2009), but as suggested by Friedman et al. (2006) the
current intelligence measures do not sufficiently assess these execu-
tive control abilities as a contributing factor to ‘intelligent behavior’.
Thus, in order to capture the complexity of individual differences in
cognitive abilities, tests should assess both domains of intelligence
and executive function.

Partial least squares framework

Recent studies have emphasized the potential of multivariate analy-
ses for brain development data in general (Bray et al., 2009) and brain
maturation in particular (Dosenbach et al., 2010; Hoeft et al., 2011;
Lerch et al., 2006; Misaki et al., 2012). The partial least squares (PLS)
approach is a class of latent variable algorithms initially originated by
Herman Wold (Wold, 1975, 1982) to model associations between two
or more blocks of indicators of a system by means of latent variables
(Geladi, 1988; Hoeskuldsson, 1988; Wegelin, 2000). PLS has proven to
be particularly usefulwhen the number of observations ismuch smaller
than the number of indicators. In addition to applications in psychology,
economics, chemometrics and medicine, PLS was successfully intro-
duced to identify associations between multiple behavioral predictors
and whole brain activity correlates derived from PET and fMRI
(Koutsouleris et al., 2010; Krishnan et al., 2011; McIntosh and
Lobaugh, 2004; McIntosh et al., 1996, 2004). There are several advan-
tages of PLS for the purpose of modeling the relationship among local
brain structure and multivariate cognitive abilities:

Firstly, the PLS framework naturally extends the classical latent
variable approach to cognitive ability tests (Bartholomew, 2004;
Carroll, 1993; Jensen, 1998; Spearman, 1904) in a way that directly
includes structural properties of brains in the very process of model-
ing individual differences. In particular, neuroimaging studies that
investigate multivariate aspects of individual differences of cognitive
abilities (e.g. (Barbey et al., in press; Colom et al., 2006, 2007, 2010;
Ebisch et al., 2012; Gläscher et al., 2010; Karama et al., 2011)) often
apply an analysis procedure with the following two separate steps.
(A) At first a measurement model of multiple cognitive tests is
used to obtain valid estimates of specific cognitive domains or to ex-
tract higher order intelligence factors. (B) Afterwards the obtained
domain- or factor scores are related to the structural brain data
using the general linear model in a mass-univariate manner. Using (A)
and (B) basically corresponds to decomposing the unknown multi-
variate mapping F: C → B of the ‘cognitive abilities space’ to the
‘brain structure space’ into separate univariate mappings for each
voxel/vertex and cognitive domain/factor. By applying PLS we pro-
pose a fundamentally different approach that jointly models individ-
ual differences in both multivariate spaces in a single generative
model of latent variables. Instead of exploring neuronal correlates
of a-priori fixed cognitive constructs this generalizes the covariance
to amultivariate problemwith free weightings in both spaces. Moreover,
the major difference is that the optimal feature weighting in both spaces
is driven by the maximum covariances (see e.g. Shawe-Taylor and
Cristianini, 2004) instead of maximizing (error-free) variance in factor
analysis or latent variable modeling of cognitive tests.

Secondly, the PLS approach is an exploratory method that affords
the analysis of structural patterns through the entire brain. PLS over-
comes the limitation of the numbers of observed variables in structural
equationmodeling (SEM) and thus allows the analysis ofMR-based im-
ages with tens or hundreds of thousands of voxels or vertices without
a-priori selection of certain ROIs.

Thirdly, PLS models overcome a limitation of mass-univariate
approaches by increasing the sensitivity to detect subtle or spatially
distributed effects in brain signals (McIntosh and Lobaugh, 2004). Un-
like the general linear model (Monti, 2011, for review), PLS explicitly
allows modeling effects of numerous strongly collinear or near-linear
dependent indicators (Wegelin, 2000), which is especially true for
cognitive ability tests (Jensen, 1998).

Fourthly, in contrast to the alternative and very similar canonical
correlation analysis (CCA) (Borga et al., 1992, for a unified framework
of PLS and CCA), the coefficients derived from PLS modeling were
found to be easier to interpret and more stable (Wegelin, 2000).
This is mainly because the coefficients in PLS models express the bi-
variate contribution of each indicator to the latent variables which
is in contrast to the mutually dependent coefficients derived from
CCA that ‘behave’ more like multiple linear regression coefficients.

The aim of the current study was to identify latent variables un-
derlying multiple cognitive abilities and local brain structure in a
large sample of 286 healthy children and adolescents from the NIH
study of normal brain development. By using partial least squares
correlation (PLSC) and voxel-based morphometry (VBM) we ex-
plored gray matter networks that covaried with a broad set of 19 abil-
ities tests in the domains of intelligence, processing speed, and
executive functioning. Finally, we explored age-related maturational
differences of the covariance in age groups of younger and older chil-
dren, and adolescents.

Materials and methods

Modeling cognitive abilities and local brain structure in the PLS framework

Though the PLS framework is much more general we here only
focus on the two-block case and use it to jointly analyze individual
differences in a set of behavioral predictors and spatial brain vari-
ables. We assume the cognitive data and the brain data is represented
in two matrices (or blocks) X and Y, respectively l × m and l × n. The
columns of X correspond to cognitive test data, e.g. total IQ scores or
verbal span. The columns of Y contain voxelwise structural brain fea-
tures after normalization and registration, in particular local gray
matter volume maps obtained from VBM. In order to avoid variance
differences that may bias the PLS modeling steps, we assume the col-
umns of X and Y to be standardized features, e.g. z-scores. The main
idea here is that individual differences observed in X and Y are gener-
ated by two latent variables, say ζ and ξ, respectively. In other words,
the columns in X and Y are assumed to be indicators for the a-priori
unknown variables ζ and ξ which we estimate from the data. Impor-
tantly, ζ and ξ are assumed to covary, in order to represent the
cross-covariance of the indicators XTY at the level (of error free) la-
tent variables, which makes PLSC a special case of structural equation
modeling (SEM). A graphical path model representation of the above
outlined idea is depicted in Fig. 1A. Our goal to identify directions of
maximum covariance in the multivariate observations X and Y can
be further formalized:

σ1 ¼ Cov ζ1; ξ1ð Þ ¼ max
jjujj¼jjvjj¼1

Cov Xu;Yvð Þ: ð1Þ

The desired solution for weightings (or often called saliences) u
and v are the first left and right singular vectors of the cross-block co-
variance matrix XTY. We here applied the SVD approach to imple-
ment the criteria (1) that directly calculates the left and right
singular vectors of the covariance matrix XTY. Thus, the main results
of this paper further exploit the PLS-SVD algorithm. However, the
readers particularly interested in other iterative and kernel-based ap-
proaches to PLSC are referred to Supplemental material S1. This also
includes the comparison of the underlying orthogonality constraints
for PLS-SVD and PLS-NIPALS and the similarity of analysis results of
particular PLSC implementations in our NIH dataset.

Application to the NIH study of healthy brain development

Sample
We used a subsample of the NIH MRI study of normal brain devel-

opment available in the NIH MRI Pediatric MRI Data Repository,
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