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Cross-sectional analysis of longitudinal anatomical magnetic resonance imaging (MRI) data may be
suboptimal as each dataset is analyzed independently. In this study, we evaluate how much variability can be
reduced by analyzing structural volume changes in longitudinal data using longitudinal analysis. We propose a
two-part pipeline that consists of longitudinal registration and longitudinal classification. The longitudinal regis-
tration step includes the creation of subject-specific linear and nonlinear templates that are then registered
to a population template. The longitudinal classification step comprises a four-dimensional expectation-
maximization algorithm, using a priori classes computed by averaging the tissue classes of all time points
obtained cross-sectionally.
To study the impact of these two steps, we apply the framework completely (“LL method”: Longitudinal
registration and Longitudinal classification) and partially (“LC method”: Longitudinal registration and
Cross-sectional classification) and compare these with a standard cross-sectional framework (“CC method”:
Cross-sectional registration and Cross-sectional classification).
The three methods are applied to (1) a scan–rescan database to analyze reliability and (2) the NIH pediatric
population to compare gray matter growth trajectories evaluated with a linear mixed model.
The LL method, and the LC method to a lesser extent, significantly reduced the variability in the measure-
ments in the scan–rescan study and gave the best-fitted gray matter growth model with the NIH pediatric
MRI database. The results confirm that both steps of the longitudinal framework reduce variability and
improve accuracy in comparison with the cross-sectional framework, with longitudinal classification yielding
the greatest impact.
Using the improved method to analyze longitudinal data, we study the growth trajectories of anatomical
brain structures in childhood using the NIH pediatric MRI database. We report age- and gender-related
growth trajectories of specific regions of the brain during childhood that could be used as a reference in
studying the impact of neurological disorders on brain development.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Structural age-related change measurements from brain magnetic
resonance imaging (MRI) are crucial to the study of normal brain
growth and to understanding the biological process underlying
brain development. They are also important in assessing the impact
of neurological disorders and neurodegenerative diseases on brain
growth.

Whereas a cross-sectional study involves only one structural mea-
surement per subject, in a longitudinal study, multiple measurements
are taken per subject. Indeed, subjects in cross-sectional MRI studies
are scanned only once, while those in longitudinal studies are
scanned repeatedly over time. Thus, longitudinal studies allow the
observation of individual patterns of change.

To study age-related changes in cerebral structures during child-
hood, previous studies used either cross-sectional (Lange, 2011) or
longitudinal brain MRI scans (Giedd et al., 1999; Lenroot and Giedd,
2006). In studies that used longitudinal pediatric brain MRI scans,
each scan of a specific subject was analyzed independently. The
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structural brain measurements were computed without considering
the longitudinal consistency between the scans of a single subject.

Recent methods reduce within-subject variability by taking into
account longitudinal consistency whether for registration or tissue
segmentation (Reuter et al., 2012; Wu et al., 2012).

Longitudinal registration was first proposed by Shen and Davatzikos
(2004), who computed deformations between longitudinally acquired
subject scans and a four-dimensional (4D) template. Thereafter,methods
using consistent diffeomorphic registration of longitudinal images were
presented (Durrleman et al., 2009; Lorenzi et al., 2010), and more
recently, the creation of a subject-specific linear template was intro-
duced (Reuter et al., 2012).

Regarding longitudinal classification, one proposed method incor-
porated longitudinal consistency constraints in a 3D fuzzy clustering
segmentation (Xue et al., 2006), while another presented 4D image
segmentation with a graph cut algorithm (Wolz et al., 2010).

Inspired by this previous work, we introduce a new method to
measure structural volume changes in longitudinal MRI scans in which
longitudinal information is used for both registration and segmentation.
First, we propose the creation of linear and nonlinear subject-specific
templates. Each time point is registered to the subject-specific template,
which is registered to the population template, thus making the
registration of time points to the population template more consis-
tent. Second, we combine this registration with a 4D expectation-
maximization (EM) algorithm for tissue classification, using a priori
classes computed by averaging the tissue classes of all time points
obtained cross-sectionally. This step allows us to take advantage of
the longitudinal consistency of the classification.

The goal of the present paper is twofold. First, we study how longitu-
dinal registration and longitudinal classification improve the longitudi-
nal measurements. The longitudinal pipeline is compared with both a
cross-sectional pipeline and a hybrid pipeline that combines longitudinal
registration with cross-sectional tissue classification. These three pipe-
lines are applied to a scan–rescan database to study the variability in
the measurements and to the National Institutes of Health (NIH) MRI
study of normal brain development (Evans, 2006) to study the impact
of the variability in measurements on the gray matter (GM) growth
curve models.

Second, we apply the longitudinal pipeline to report the growth
trajectories of different anatomical brain structures in childhood
using the NIH pediatric MRI database. We compare these growth
trajectories with previously reported trajectories obtained from cross-
sectional and longitudinal datasets.

Experimental results using the scan–rescan data as well as the
longitudinal data from a large ensemble of subjects show that the
variability of segmented volumes decreases by half as more consistent
priors are used for tissue classification across all time points when
using the proposed longitudinal image processing procedures.

Longitudinal method (LL)

The longitudinal pipeline (“LL method”: Longitudinal registration
and Longitudinal classification) comprises the registration framework
and classification framework defined below. Fig. 1 shows a flowchart
detailing the steps involved in the LL method and the volume and
registration notations used below.

Fig. 1. Flow diagram of the LL method, for time point i. (Ni: native T1w data from time point i; Ri: T1w data from time point i aligned with the other time points in the ICBM152
template space but not scaled; Si: T1w data from time point i linearly resampled in the ICBM152 template space; GMci/WMci/CSFci: cross-sectional classification results for time
point i; GMli/WMli/CSFli: longitudinal classification results for time point i; T x→y: transformation from volume x to volume y; ⊗: concatenation of transformations using the
convention of concatenating paths from right to left.)
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