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Proton magnetic resonance spectroscopy (1H-MRS) is capable of noninvasively detecting metabolic changes
that occur in the brain tissue in vivo. Its clinical utility has been limited so far, however, by analytic methods
that focus on independently evaluated metabolites and require prior knowledge about which metabolites to
examine. Here, we applied advanced computational methodologies from the field of metabolomics, specifi-
cally partial least squares discriminant analysis and orthogonal partial least squares, to in vivo 1H-MRS
from frontal lobe white matter of 27 patients with relapsing–remitting multiple sclerosis (RRMS) and 14
healthy controls. We chose RRMS, a chronic demyelinating disorder of the central nervous system, because
its complex pathology and variable disease course make the need for reliable biomarkers of disease progres-
sion more pressing. We show that in vivo MRS data, when analyzed by multivariate statistical methods, can
provide reliable, distinct profiles of MRS-detectable metabolites in different patient populations. Specifically,
we find that brain tissue in RRMS patients deviates significantly in its metabolic profile from that of healthy
controls, even though it appears normal by standard MRI techniques. We also identify, using statistical
means, the metabolic signatures of certain clinical features common in RRMS, such as disability score, cogni-
tive impairments, and response to stress. This approach to human in vivoMRS data should promote understand-
ing of the specific metabolic changes accompanying disease pathogenesis, and could provide biomarkers of
disease progression that would be useful in clinical trials.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The challenge of finding biomarkers for multiple sclerosis

Multiple sclerosis (MS) is an immune-mediated demyelinating
disorder affecting the central nervous system; it is one of themost fre-
quent causes of disability in young adults (Kurtzke and Wallin, 2000).
Most patients suffer a relapsing–remitting (RR) disease course that over
time transitions into insidious progression. The pathogenic mechanisms
that underlie the relapsing phase and lead to the transition from
RR to secondary progression remain poorly understood (Frohman
et al., 2006); clinically, the unpredictability and variability in symp-
toms complicate disease management and render prognosis particu-
larly elusive.

Knowledge of metabolic changes, which are a reflection of the un-
derlying biochemistry, could provide biomarkers that would greatly
improve the prospects of managing MS, and provide insight into the
disease process itself. Ideally, MS biomarkers would be acquired non-
invasively and would reflect disease-related pathogenic processes.
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Such biomarkers could foster early diagnosis and perhaps distinguish
between those patients who present with clinically isolated syn-
drome, but never develop MS, from those who will develop a RR dis-
ease. Biomarkers, or specific patterns of biomarkers, would also make
it possible to quantify patient response to treatments, improving the
quality and specificity of clinical trials.

The strengths and limitations of conventional MRI and MRS

The ability of conventional magnetic resonance imaging (MRI) to
identify demyelinating inflammatory plaques within the white mat-
ter offers a fairly noninvasive way to track disease progression by
monitoring lesion burden, though there is often only a loose correlation
between changes revealed by conventional MRI and clinical status
(Bakshi et al., 2008).MRI can improve diagnosis ofMS by distinguishing
it from disorders with a similar clinical presentation, but here again it is
not foolproof: T2 lesions occur in other neurological disorders and have
been documented in asymptomatic aging brains (Bakshi et al., 2008;
Vernooij et al., 2008), while some patients with clinically definite MS
display no MRI abnormalities (Fazekas et al., 1999).

Neuroimaging methods such as magnetic resonance spectroscopy
(MRS) can revealmetabolic changes inwhitematter that appears healthy
by conventional MRI (De Stefano and Filippi, 2007), and therefore might
provide a more precise means of diagnosing and following the disease
course. However,MRShas its own limitations:MRS studies typically eval-
uate independent changes in only a small handful of major metabolites
(Poullet et al., 2008; Sajja et al., 2009) such as N-acetyl groups (mainly
N-acetyl aspartate (NAA)), choline-containing compounds (Cho), crea-
tine and phosphocreatine (Cr + PCr), and myo-inositol (mI). While
changes in these specific metabolites have been reported at various
stages of MS (Arnold et al., 1994; Chard et al., 2002; Narayana, 2005),
such targeted analyses have failed to develop an MS-specific metabolic
signature. More importantly, these targeted analyses rely on prior
knowledge about the metabolite's presence to calculate and compare
group means—however, they overlook a vast amount of potentially
valuable information that might be contained in smaller but abundant
metabolites such as lipids, lactate, aspartate (Asp), glutamine (Gln), and
glutamate (Glu), which are difficult to quantify using current methods.

Metabolomic techniques can circumvent these limitations

To circumvent these limitations, we turned to techniques devel-
oped in the emerging field of metabolomics. Metabolomics uses a
non-targeted approach to obtain an accurate representation of the
metabolome, the collection of small molecules that reflect the pro-
cesses which take place in living biological systems (Griffin, 2003;
Lindon and Nicholson, 2008; Smolinska et al., 2012). In contrast to
the traditional approach of interrogating a specific subset of small mol-
ecules based on a predetermined hypothesis, similar to testing for high
cholesterol as an indicator of heart disease, the aim of metabolomics is
to acquire a functional biochemical profile that encompasses all detect-
able small metabolites (specifically identified or not) and trace changes
in the profile over the course of development or disease to generate
new hypotheses. Whether the goal is to assess the metabolic effect of
diet, a response to drug therapy or differences in populations, the ques-
tion is simple: what has changed?

Metabolomic analysis can be performed on any biological matrix—
blood, tears, urine, cerebrospinal fluid or biopsied tissue in vitro, or
living tissue in vivo—using mass spectrometry or nuclear magnetic
resonance (NMR) spectroscopy (Hassan-Smith et al., 2012; Lindon
and Nicholson, 2008). The resulting high-density datasets are analyzed
with multivariate statistical modeling to identify metabolites that
correlate with functional changes in a given system (Griffin, 2003).
Metabolomic-type analysis can overcome the sorts of signal distor-
tions that can occur with MRS, providing previously unavailable infor-
mation about living tissue, in vivo. Unlike other quantification tools,

metabolomic analysis of the full resolution spectra has the advantage
of not requiring a priori knowledge such as the line shapes of themetab-
olite resonances. Therefore, the resonances that can be identified are
not limited to the user's input criteria, and changes in small resonances
can be extracted.

Untargeted metabolic profiling has been proven feasible for a vari-
ety of human diseases (Griffin, 2003). One of the most significant ap-
plications has been the use of NMR-based metabolomics on sera for
rapid, accurate, and noninvasive assessment of coronary artery dis-
ease (Brindle et al., 2002). Other applications include the detection
of oral squamous cell carcinoma using plasma (Zhou et al., 2009), ep-
ithelial ovarian cancer with sera (Odunsi et al., 2005), the characteri-
zation of inflammatory bowel disease using urine samples (Williams
et al., 2009), and distinguishing multiple sclerosis patients from con-
trols using cerebrospinal fluid samples (Hassan-Smith et al., 2012;
Rajalahti et al., 2010). In vivo, a lot of work and much success have
been in the area of distinguishing brain tumor type and grade usingmet-
abolic profiling in combinationwith otherMRmeasures (Galanaud et al.,
2006; Preul et al., 1996).

In our study, we extend multivariate statistical analyses to in vivo
MRS spectra obtained from individualswith RRMS and healthy controls.
We identify a metabolomic model of RRMS that distinguishes between
spectra from three tissue types in vivo: the white matter of the frontal
lobe in healthy controls (CTWM); the frontal lobe in RRMS patients,
which appears normal by conventional MRI (normal-appearing white
matter, NAWM); and the periventricular non-enhancing lesions in
RRMS (NELES). We validate this metabolomic model by predicting a
set of spectra not used in themodel-building procedure and achieve ex-
cellent assignment of tissue type. We also show, for the first time, that
the untargeted metabolomic techniques applied to in vivo MRS data
can identifymetabolic perturbations that correlatewith clinical features
common in RRMS.

Subjects and methods

Subject selection

The study was designed to focus solely on RRMS subjects whose
clinical information is summarized in Supplementary Table 1. We
recruited 27 individuals (22 females, age 38.6 ± 10.1 years; age
range: 23–62 years) who met diagnostic criteria for RRMS (Polman
et al., 2011) through the outpatient offices of the Multiple Sclerosis
Comprehensive Care Center in Stony Brook, NY. RRMS subjects had
to be clinically stable, which we defined as at least two months
since the last relapse, ambulatory with at most bilateral assistance,
and able to tolerate neuroimaging. Participants could be on or off
disease-modifying therapy, but their medications had to have been
stable for at least two months prior to evaluation, and participants
were imaged no sooner than four weeks after their last steroid dose.
Subjects with an Extended Disability Status Scale (EDSS) (Kurtzke,
1983) greater than 6.5 were excluded from the study.

The control group consisted of 14 subjects (13 females; age 31.1 ±
9.1 years; range: 21 to 51 years) recruited from a community sample
of healthy volunteers who had no history of neurological disorders. All
participants gave written consent to participate in the study, which
was approved by the Institutional Review Boards of Stony Brook and
Princeton Universities.

Subject evaluations

Neuropsychological measures were included on a subgroup of
participants who consented for cognitive testing (Table 1). Neuropsy-
chological measures included: the Rey Auditory Verbal Learning Test
(RAVLT), a list learning task that assesses verbal learning and memo-
ry (Nici, 2000); the Symbol Digit Modality Test (SDMT), a measure of
working memory and cognitive processing speed (Parmenter et al.,
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