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We introduce a new method for measuring visual population receptive fields (pRF) with functional magnetic
resonance imaging (fMRI). The pRF structure is modeled as a set of weights that can be estimated by solving a
linear model that predicts the Blood Oxygen Level-Dependent (BOLD) signal using the stimulus protocol and
the canonical hemodynamic response function. This method does not make a priori assumptions about the
specific pRF shape and is therefore a useful tool for uncovering the underlying pRF structure at different spa-
tial locations in an unbiased way. We show that our method is more accurate than a previously described
method (Dumoulin and Wandell, 2008) which directly fits a 2-dimensional isotropic Gaussian pRF model
to predict the fMRI time-series. We demonstrate that direct-fit models do not fully capture the actual pRF
shape, and can be prone to pRF center mislocalization when the pRF is located near the border of the stimulus
space. A quantitative comparison demonstrates that our method outperforms the direct-fit methods in the
pRF center modeling by achieving higher explained variance of the BOLD signal. This was true for direct-fit
isotropic Gaussian, anisotropic Gaussian, and difference of isotropic Gaussians model. Importantly, our
model is also capable of exploring a variety of pRF properties such as surround suppression, receptive field
center elongation, orientation, location and size. Additionally, the proposed method is particularly attractive
for monitoring pRF properties in the visual areas of subjects with lesions of the visual pathways, where it is
difficult to anticipate what shape the reorganized pRF might take. Finally, the method proposed here is more
efficient in computation time than direct-fit methods, which need to search for a set of parameters in an
extremely large searching space. Instead, this method uses the pRF topography to constrain the space that
needs to be searched for the subsequent modeling.

© 2013 Elsevier Inc. All rights reserved.

Introduction

One of the great achievements of fMRI is the in-vivo characterization
of the functional organization of the human visual cortex. Earlymethods
for the retinotopic mapping of the visual cortex (DeYoe et al., 1996;
Dougherty et al., 2003; Engel et al., 1994, 1997; Sereno et al., 1995)
used ring and wedge stimuli, and reported a strong coherence between
the blood oxygen level-dependent (BOLD) signal arising in a voxel and
particular stimulus locations in the visual field. From these measure-
ments, the eccentricity and azimuth visual angle of each voxel can be es-
timated and this information can be used to define the borders between
early visual areas (Sereno et al., 1995; Wandell et al., 2007).

Recently, Dumoulin and Wandell (2008) introduced a new method
to model population receptive fields (pRFs) and quantitatively assess

their properties. This seminal approach allowed us for the first time to
measure quantitatively, in vivo, basic population receptive field proper-
ties in human visual areas. Like any method, however, this approach
also has its limitations. For example, it assumed that the pRF has an iso-
tropic Gaussian topographywhile the potentially suppressive surround
is not modeled. There have been subsequent approaches (Harvey and
Dumoulin, 2011; Zuiderbaan et al., 2012) which have used the same
principles with different pRF models, but in general any assumptions
about the receptive field structure puts some a priori constraints on
the ability to extract the pRF topography without necessarily strong
experimental justification. Inaccurate assumptions about the pRF to-
pography could lead to the wrong model and to potentially erroneous
estimation of pRF characteristics such as location and size. It would
therefore be useful to have a method that can provide information
about pRF topography in an unbiased manner.

To overcome theseproblems,we propose a newdata-drivenmethod
that estimates the structure of the pRF.Without assuming the pRF shape
a priori, wemodel the pRF as a vector ofweightswhich can be estimated
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from the fMRI time-series by solving a set of linear equations for each
voxel. This approach is similar to linear reverse correlationmethods ap-
plied in electrophysiology (Ringach, 2004; Simoncelli et al., 2004). By
avoiding a-priori assumptions, our method enables us to visualize pRF
features such as surround suppression, or the anisotropic shape of the
pRF. Visual inspection of the pRF topography can then guide the devel-
opment of more appropriate models for fitting the pRF weights. This is
particularly important in regions where the pRF shape is unknown.
Even in early visual cortex, exploring the pRF topography reveals that
pRF centers would be best modeled by an anisotropic Gaussian, in con-
trast to prevailing methods (Dumoulin andWandell, 2008; Harvey and
Dumoulin, 2011; Zuiderbaan et al., 2012). This approach yields an esti-
mate of the orientation and elongation of the pRF center in addition to
an estimate of its location and size.

In order to evaluate the method we proposed, we compared its per-
formance to that of direct pRF model fitting methods. Our method of
estimating the pRF center outperforms the direct-fit isotropic Gaussian
(DIG) (Dumoulin andWandell, 2008), the direct-fit anisotropic Gaussian
(DAG), and the direct-fit difference of isotropic Gaussians (DDoIG)
(Harvey and Dumoulin, 2011; Zuiderbaan et al., 2012) models by
i) explaining a larger part of the BOLD signal variance, and by ii) provid-
ing more accurate eccentricity maps. In addition, visualizing the pRF
topography as proposed here can make the subsequent modeling more
efficient in computation time by constraining the pRF shape prior to
the modeling. In contrast, direct-fit methods need considerably longer
computation time as they have to select the best set of parameters in a
much larger searching space.

Material and methods

Subjects

FMRI datawere acquired from4participants (2 females, ages 23–26).
All participants had normal or corrected-to-normal visual acuity. Exper-
iments were conducted with the informed written consent of each par-
ticipant and were approved by the Ethical Committee of the Medical
Faculty of the University of Tübingen.

Stimulus

While scanning, participants fixated a central spot (radius: 0.0375°;
2 pixels) while a moving bar aperture exposed a moving square-
checkerboard pattern with 100% contrast travelling across the visual
field. The checkerboard pattern aligned to the longitudinal axis of the
bar aperture moved in orthogonal directions of the bar movement.
The stimulus was presented only over the central part of the visual
field within a circular disk with radius 11.25°. The bar was moved se-
quentially in 8 different directions according to the following sequence
[0, 135, 270, 315, 180, 45, 90, 225°] (Fig. 1A), where angles are reported
counter-clockwise from the horizontal (0°) direction of the right visual
hemifield. The long axis of the bar was orthogonal to the drifting direc-
tion. In each direction, the bar drifted 24 steps with each moving step
being 0.9375°. The bar width was 1.875°. The position of the bar was
updated for every image volume acquisition. The visual stimuli were
generated with an adaptation of an open toolbox (VISTADISP), and
PsychToolbox (Brainard, 1997) in MATLAB (The Mathworks, Inc.). The
stimuli were presented through an MR-compatible goggle system
(VisuaStimDigital, Resonance Technology Inc., Northridge, CA, USA)
with min luminance = 0.39 cd/m2, mean luminance = 6.27 cd/m2,
and max luminance = 12.15 cd/m2 (lower photopic vision).

Data acquisition and preprocessing

All subjects participated in scanning sessions to obtain T1-weighted
anatomical volume and functional volume data. FMR and structural MR
imaging were performed using a 3T whole body scanner (Trio Tim,

Siemens, Erlangen, Germany) with a 12-channel head coil. Two
T1-weighted anatomical volumes (T1 MPRAGE scan) were acquired
for each subject and averaged to increase signal to noise ratio [matrix
size = 256 × 256, voxel size = 1 × 1 × 1 mm3, 176 partitions, flip
angle = 9°, TR = 1900 ms, TE = 2.26 ms, TI = 900 ms]. The structur-
al data were used for segmentation of anatomical data into white and
gray matter (Teo et al., 1997). Functional BOLD image volumes were
acquired using gradient echo sequences of 28 contiguous 3 mm-thick
slices covering the entire brain (repetition time [TR] = 2,000 ms,
echo time [TE] = 40 ms, matrix size = 64 × 64, voxel size = 3 ×
3 × 3 mm3, flip angle = 90°).

We performed 5–9 identical scanning sessions. In each functional
session, 195 image volumes were acquired, the first 3 of which were
discarded to allow for signal stabilization. Motion artifacts within and
between runs were corrected (Nestares and Heeger, 2000). The func-
tional images were co-registered with the averaged anatomical image
using a mutual information method (Maes et al., 1997). All these pre-
processing steps were performed using VISTA software (http://white.
stanford.edu/software/). After detrending fMRI data in each scan with
a cut-off frequency of 1 cycle per scan, all functional images across
scans were averaged to formulate a volume series of 192 images.

Estimation of pRF topography based on linear system analysis

To predict the fMRI signals, we used a linear model for the fMRI
response (Birn et al., 2001; Boynton et al., 1996; Friston et al., 1995;
Hansen et al., 2004; Worsley and Friston, 1995). As opposed to the
pRF model which directly uses a Gaussian model with a single sigma
(Dumoulin and Wandell, 2008) to fit the BOLD data, we first use the
BOLD data to estimate a weight vector representing the detailed topog-
raphy of the pRF. Then, in a second step,we select an appropriatemodel
to fit the observed pRF structure. The “stimulus presentation space” cor-
responding to a circular disk in the visual field, is represented as M
pixels with size of 0.0187 × 0.0187 degrees per pixel. The stimulus at
time t is denoted as s tð Þ∈RM and the pRF at voxel i is denoted as
pi∈RM . Under the linear model, the presentation of the effective stim-
ulus to the pRF of voxel i causes the following response:

r tð Þ ¼ pTi s tð Þ ð1Þ

After convolvingwith the canonical hemodynamic response function
(HRF) h(t), the prediction of the BOLD response di(t) at voxel i and time t
is obtained:

di tð Þ ¼ h tð Þ � pTi s tð Þ
� �

ð2Þ

The convolution in Eq. (2) is reformulated into:

di ¼ Kpi ¼ HSpi ð3Þ

where H is a matrix form for the convolution of h(t) and S = [s(1),⋯,
s(t),⋯, s(N)]T, (N: the number of volume instances). In our study, a
two-gamma function (Friston et al., 1998; Glover, 1999; Worsley et
al., 2002) with the default parameters in the VISTA software was
used as the canonical HRF as follows:

h tð Þ ¼ t=d1ð Þα1 exp − t−d1ð Þ=β1ð Þ−c t=d2ð Þα2 exp − t−d2ð Þ=β2ð Þ; ð4Þ

where d1 = 5.4,α1 = 5.98, β1 = 0.90, c = 0.35, d2 = 10.8,α2 = 11.97,
and β2 = 0.90.

Then, when the observed signal vector yi at voxel i is given, the
pRF pi can be estimated via a least-square fit:

Ji ¼ ‖yi−di‖
2 ¼ ‖yi−Kpi‖

2
: ð5Þ

145S. Lee et al. / NeuroImage 81 (2013) 144–157

http://white.stanford.edu/software/
http://white.stanford.edu/software/


Download English Version:

https://daneshyari.com/en/article/6029064

Download Persian Version:

https://daneshyari.com/article/6029064

Daneshyari.com

https://daneshyari.com/en/article/6029064
https://daneshyari.com/article/6029064
https://daneshyari.com

