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Isolating the neural correlates of object recognition and studying their fine temporal dynamics have been a
great challenge in neuroscience. A major obstacle has been the difficulty to dissociate low-level feature ex-
traction from the actual object recognition activity. Here we present a new technique called semantic
wavelet-induced frequency-tagging (SWIFT), where cyclic wavelet-scrambling allowed us to isolate neural
correlates of object recognition from low-level feature extraction in humans using EEG. We show that
SWIFT is insensitive to unrecognized visual objects in natural images, which were presented up to 30 s,
but is highly selective to the recognition of the same objects after their identity has been revealed. The
enhancement of object representations by top-down attention was particularly strong with SWIFT due to
its selectivity for high-level representations. Finally, we determined the temporal dynamics of object repre-
sentations tracked by SWIFT and found that SWIFT can follow a maximum of between 4 and 7 different object
representations per second. This result is consistent with a reduction in temporal capacity processing from
low to high-level brain areas.

© 2013 Elsevier Inc. All rights reserved.

Introduction

How visual objects are represented as meaningful items in our
brains and become part of our conscious experience is one of the
most fascinating questions in neuroscience. Current models, largely
inspired by invasive studies in monkeys, propose a view of the visual
system where object representations emerge progressively from a hi-
erarchical cascade of processing stages (Felleman and Van Essen,
1991; Riesenhuber and Poggio, 1999). Early stages are devoted to
extracting simple visual features such as luminance (Amthor et al.,
2005), contrast (Sclar et al., 1990), contours (Hubel and Wiesel,
1968) and intersecting lines (Hegdé and Van Essen, 2000). Down-
stream in the ventral pathway, the integration of these simple fea-
tures implies that neurons become selective to more and more
complex forms, e.g. in area V4 (Gallant et al., 1993). At the highest
purely visual area in the ventral stream, the inferotemporal cortex
(IT), neurons can be selective to single object categories (Kobatake
and Tanaka, 1994; Tanaka, 1996).

While neuronal selectivities in the ventral stream of the monkey
visual system are well understood, their associated semantic value
is difficult to access. Where and when do meaningful object represen-
tations emerge? Non-invasive techniques have been developed to
track visual stimulus representations in the human brain – for
which perceptual meaning can be more readily assessed. Functional

magnetic resonance imaging (fMRI) has played a major role in under-
standing the human brain areas engaged in object representations.
For example, fMRI has revealed that some regions of the temporal
lobe are selective to faces in the FFA (Kanwisher et al., 1997), scenes
in the PPA (Epstein et al., 1999) or body parts in sub-regions of the
LOC (Downing et al., 2001), and there is good evidence that these re-
gions respond more strongly when the corresponding stimuli are
consciously perceived by the subjects (Bar et al., 2001; Grill-Spector
et al., 2000; Hesselmann and Malach, 2011; Tong et al., 1998). How-
ever, the temporal dynamics of object representations on the scale
of a few tenths of a second are unattainable to the slower temporal
resolution of fMRI. Electroencephalography (EEG) has been exten-
sively used to explore these temporal dynamics in humans. More
particularly, steady-state visual evoked potentials (SSVEP) can track
the activity elicited by a given visual stimulus in near-real time. This
method, also known as frequency tagging, involves the modulation
of a stimulus' intensity over time at a fixed temporal frequency f0; a
neural response is evoked at the same frequency f0 (and usually its
harmonics), thus providing a frequency label (or tag) for the stimulus
representation in the brain (Appelbaum and Norcia, 2009; Regan,
1977; Srinivasan et al., 2006). The frequency-tagged response has
been found to depend on attention (Ding et al., 2006; Kim et al.,
2007; Morgan et al., 1996; Müller et al., 1998) and on the subject's
perceptual state (Kaspar et al., 2010; Srinivasan and Petrovic, 2006;
Sutoyo and Srinivasan, 2009; Tononi et al., 1998). One limitation of
SSVEP is that they normally rely on themodulation of stimulus contrast
or luminance; as a result, both semantic object-representations and
low-level feature extraction mechanisms are simultaneously tagged
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at the modulation frequency. As a result, previous studies reported
non-consistent effects of object recognition on SSVEP amplitude across
tagging frequencies, with recognized images sometimes leading to
higher and sometimes to lower SSVEP amplitudes than unrecognized
ones (Kaspar et al., 2010). In order to try to disentangle low-level fea-
ture extraction processes from semantic object-representations, we de-
veloped a novel technique called SWIFT (semantic wavelet-induced
frequency tagging) in which we equalized low-level physical attributes
(luminance, contrast and spatial frequency spectrum) across all frames
of a sequence, while modulating, at a fixed frequency f0, the mid- and
higher-level image properties carried by the spatial configuration of
local contours.

In order to validate the sensitivity of our technique to high-level
visual representations, we reasoned that SWIFT should satisfy 3
criteria that we tested in separate experiments. First, activity elicited
by explicitly recognized objects should be clearly differentiated from
activity elicited by non-recognized objects: indeed, we found that
SWIFT is insensitive to unrecognized objects presented up to 30 s,
but is highly selective to the recognition of the same objects once
their identity has been explicitly revealed. Second, as a consequence
of the top-down transmission of attention signals (Lauritzen et al.,
2009; Saalmann et al., 2007), attentional modulation intensity should
be greater for high-level visual representations than for lower ones;
indeed, we demonstrated that SWIFT responses are strongly modu-
lated by top-down attention – considerably more so than classic
SSVEP signals. Third, as a result of a reduction in temporal processing
capacity from early visual cortex to higher areas (Gauthier et al.,
2012; Holcombe, 2009; McKeeff et al., 2007), high-level representa-
tions should be limited in their temporal sensitivity: indeed, we
found that SWIFT responses reached a limit between 4 and 7 items
per second.

Material and methods

SWIFT sequences creation

SWIFT sequences were created by cyclic wavelet scrambling in the
wavelets 3D space. We chose wavelet image decomposition rather
than other types of image transformation (such as the Fourier transform)
because wavelet functions (contrary to Fourier functions) are localized
in space: this allowed us to scramble contours while conserving local
low-level attributes. The first step was to apply a wavelet transform
based on the discreteMeyer (dmey)wavelet and 6 decomposition levels,
using the Wavelet toolbox under Matlab (MathWorks); in other words,
the image was converted to a multi-scale pyramid of spatially organized
maps. At each location and scale, the local contour is represented by a 3D
vector v1

→
, with the 3 dimensions representing the strengths of horizon-

tal, vertical and diagonal orientations. The vector length v1
→
����

���� is ameasure

of local contour energy. In a second step, for each location and scale, two

random vectors (v2
→

and v3
→
) were defined that shared the length of the

original vector ( v1
→
����

���� ¼ v2
→
����

���� ¼ v3
→
����

����), thus conserving local energy. By def-
inition, the 3 vectors describe a unique circular path over an isoenergetic
spherewhere all surface points share the same energy (i.e., the same Eu-
clidian distance from the origin) but represent differently oriented ver-
sions of the local image contour. The cyclic wavelet-scrambling was
then performed by rotating each original vector (representing the actual
image contour), along the circular path defined above. Somewavelet el-
ements (defined by a specific spatial location and decomposition scale)
underwent this rotation once per cycle (i.e., at the fundamental frequency
f0) while others rotated multiple (integer) times per cycle (i.e., at har-
monic frequencies of f0, from the 2nd up to the 5th harmonic). The intro-
duction of harmonics was crucial to spread the temporal luminance
modulation over a broader frequency band, avoiding low-level evoked

activity at the tagging frequency f0. The 5 harmonic frequencies were dis-
tributed equally and randomly among all the wavelet elements. Finally,
the inverse wavelet transform was used to obtain the image sequences
in the pixel domain. By construction, the original unscrambled image
appeared once in each cycle, with a number of intervening wavelet-
scrambled frames that depended on the monitor refresh rate and the
tagging frequency f0. For each original image, several distinct wavelet-
scrambling cycles were computed (5 cycles in experiment 1, 2 cycles in
experiment 2 and 4 cycles in experiment 3), with different randomly
chosen values for thewavelet-scrambling trajectories and the harmonic
rotation frequency at eachwavelet element. These different cycles were
presented in random alternation during the experimental sequences.
Two final normalization steps were necessary in order to ensure
that the temporal luminance modulation for every pixel was constant
(i.e. without any peaks at the individual harmonics frequencies) within
the range of harmonic modulation frequencies, and also to ensure the
conservation of the mean luminance across frames. First, we calculated
the Fourier transform across frames for every pixel and normalized
their luminance modulation spectra. Second, mean frame luminance
was equalized over time. (NB: A Matlab script following this procedure
to create a wavelet-scrambling sequence based on any given original
image is available as Supplementary Material).

Subjects

All subjects gave informed consent to take part in these studies
that were approved by the local ethics committee. A total of 49 ob-
servers (26 women, aged 22 to 53) participated in the 3 experiments
(19 in Experiment 1, 8 in Experiment 2 and 24 in Experiment 3).

Stimuli and procedure

For all 3 experiments, subjects were placed at 57 cm of a CRT
screen with a refresh rate of 170 Hz in a dark room.

In Experiment 1, 100 SWIFT sequences containing either grayscale
natural images (bodies with faces 29%, bodies with no visible faces
16%, animals 21% and manmade objects 14%, downloaded from the In-
ternet) or low-levelmatched textures synthesized using the texture syn-
thesis algorithm developed by Portilla and Simoncelli (2000) were
shown. The number of images in each category was chosen in order to
maximize the number of non-canonical images and thus promote the oc-
currence of ‘unrecognized’ images. The image contours were modulated
cyclically over time at f0 = 1.4953 Hz. The experiment was divided in 4
blocks of 25 trials each. Each trial lasted 42 s (30 s of naïve period + 2 s
of steady image presentation + 10 s of cognizant period). Sequences
(10.5° × 10.5° visual angle) were presented at the center of the screen
over a gray background. Subjects were asked to keep their fixation
over a red cross at the center of the display during the trial. They gave
their responses (presence of a non-abstract item) at any time during
the first naïve period by pressing the left arrow of the computer key-
board for the low confidence threshold (key 1: “I perceive an object-
like item, but I am not sure of which object it is”) and the right arrow
for the high confidence threshold (key 2: “I see an object and I have iden-
tified it confidently”). Trials were classified as ‘quickly recognized’when
a natural imagewas presented and the subject recognized an object with
high confidence within the first 10 s of the naïve period. Trials were
classified as ‘tardily recognized’ when a natural image was presented
but the subject did not recognize an object during the 30 s of the naïve
period. Trials were classified as ‘no-object’ when abstract textures were
presented. Two of 19 subjects were not considered in the analysis be-
cause they had less than 7 tardily recognized trials. For the 17 remaining
subjects, the mean number of quickly recognized trials was 22.2, tardily
recognized was 22.4 and 20 no-object trials were presented systemati-
cally (the remaining trials, corresponding to incomplete or erroneous
recognition, were not included in the analysis). Response time for key
2 (“I see an object and I have identified it confidently”) in fast recognized
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