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22The resting state dynamics of the brain shows robust features of spatiotemporal pattern formation but
23the actual nature of its time evolution remains unclear. Computational models propose specific state space
24organization which defines the dynamic repertoire of the resting brain. Nevertheless, methods devoted to
25the characterization of the organization of brain state space from empirical data still lack and thus preclude
26comparison of the hypothetical dynamical repertoire of the brain with the actual one.
27Wepropose here an algorithm based on set oriented approach of dynamical system to extract a coarse-grained
28organization of brain state space on the basis of EEG signals. We use it for comparing the organization of the
29state space of large-scale simulation of brain dynamics with actual brain dynamics of resting activity in healthy
30subjects.
31The dynamical skeleton obtained for both simulated brain dynamics and EEG data depicts similar structures.
32The skeleton comprised chains of macro-states that are compatible with current interpretations of brain
33functioning as series of metastable states. Moreover, macro-scale dynamics depicts correlation features
34that differentiate them from random dynamics.
35We here propose a procedure for the extraction and characterization of brain dynamics at a macro-scale level.
36It allows for the comparison between models of brain dynamics and empirical measurements and leads to the
37definition of an effective coarse-grained dynamical skeleton of spatiotemporal brain dynamics.
38© 2013 Published by Elsevier Inc.
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43 1. Introduction

44 Brain activity is a spatiotemporal signal with deterministic and
45 stochastic characteristics. As time evolves the brain dynamics traces
46 out a trajectory in a high-dimensional state space. The objective of all
47 analysis methods is to provide a characterization of this trajectory.
48 The most frequently used approaches apply some sort of information
49 compression with the objective that the achieved reduction in com-
50 plexity is still sufficiently informative to allow for comparisons between
51 data sets, let it be different experimental conditions, different subject
52 groups or between model and empirical data. Such approaches include
53 entropy, dimension estimates, various forms of complexity, Lyapunov
54 exponents, and covariances just to name a few (see e.g. Stam (2005)
55 and Subha et al. (2010), for reviews). For each of thesemeasures multi-
56 ple derivatives exist with various degrees of sophistication. All of these
57 approaches have in common by construction that they lose their sense
58 of dynamics, that is the actual notion of temporal evolution is lost. As a

59consequence quantitative descriptions of brain activity are impove-
60rished and only capture limited aspects of the brain trajectory and
61none of its temporal nature.
62We illustrate this thought along a hotly debated example in neuro-
63science, that is the resting state dynamics of the brain, which is
64typically accessed through functional magnetic resonance imaging
65(fMRI), electroencephalographic (EEG) and magnetoencephalographic
66(MEG) measurements. The fMRI measures the blood oxygenation
67dependent level (BOLD) signals of the hemodynamic response on high
68resolution spatial scales (mm) and slow temporal scales (sec). Here a
69limited number of 8–10 robust network patterns of BOLD activity
70have been observed in the primate brain during rest in the BOLD signals
71(Biswal et al., 1995; Damoiseau et al., 2006; Raichle et al., 2001). These
72patterns are characterized by spontaneous intermittent coherentfluctu-
73ations on an ultraslow scale of b0.1 Hz. Correlation patterns amongst
74the resting state networks with strong positive and negative correla-
75tions have been observed (Fox et al., 2005). Though this finding pro-
76vides a constraint on the permissible spatiotemporal brain dynamics,
77the details remain still unclear. We still do not know if this temporal
78dynamics translates into an oscillatory coactivation of selected resting
79state networks, or a pattern competition, or even a hopping process
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80 from one resting state network to another. These important details will
81 express themselves through features of the trajectories in the state
82 space of the brain network, including their geometry and topology, as
83 well as zones of increased convergence and divergence of the trajectory
84 densities. The total loss of temporal dynamics has been nicely
85 demonstrated by Wen et al. (2012) who applied common techniques
86 of prevailing statistical approaches to surrogate fMRI data (subjected
87 to covariant randomization of the temporal order) and obtained identi-
88 cal results regarding the resting state networks.
89 We find a similar situation in electroencephalographic data. First
90 of all, the BOLD signal and its electrophysiological correlate show a
91 clear but non-trivial relationship. To investigate this relationship
92 between the BOLD signal and its underlying neural activity Logothetis
93 et al. (2001) demonstrated in anesthetized monkeys that simultaneous
94 fMRI and intracortical electrical recordings of localfield potentials show
95 positively correlated spontaneous fluctuations. Laufs et al. (2003)
96 recorded simultaneous fMRI and EEG in awake human subjects at rest
97 and found that the β-band power was positively correlated with the
98 BOLD signals in the posterior cingulate, the precuneus, the temporo-
99 parietal and dorsomedial prefrontal areas. These areas are known
100 from one of the resting state network patterns referred to as the Default
101 Mode Network (DMN), which is characterized by a reduced activation
102 during task conditions and elevated activation in absence of any task.
103 Mantini et al. (2007) also showed that different frequency bands corre-
104 late differentlywith the various resting state network patterns, whereas
105 a recent study by Scheeringa et al. (2011) demonstrated that the BOLD
106 signal in humans performing a cognitive task is related to synchroniza-
107 tion across different frequency bands. In the latter, trial-by-trial BOLD
108 fluctuations correlated positively with high γ power of the EEG and
109 negativelywithα andβ. Hence, there is empirical evidence that the spa-
110 tiotemporal dynamics of the BOLD signal is related to the spatiotempo-
111 ral dynamics of electroencephalographic signals, but the actual nature
112 of the spatiotemporal organization, in particular its time evolution is
113 not clear.
114 The situation is similar for the theoretical studies in the resting
115 state literature, certainly motivated by the objective to achieve corre-
116 spondence with empirical data (see Deco et al. (2011), for a recent re-
117 view). Essentially, in a series of theoretical studies (Deco et al., 2009;
118 Ghosh et al., 2008; Honey et al., 2007) the authors demonstrate that
119 the resting state pattern formation can be understood as emerging
120 from the network interactions of a brain network with a full brain
121 connectivity derived from either the CoCoMac database or using
122 tractographic data (DTI/DSI). Convergent evidence based on these
123 theoretical models was provided that multiple states exist during
124 the resting state, which are explored in a stochastic process driven
125 by noise. Such models agree on the importance of noise-driven explo-
126 ration of the brain dynamical repertoire, but do not fully agree on the
127 deterministic skeleton of this “dynamical repertoire”. The dynamic
128 repertoire is the set of all themacrostates thatmay be occupied during
129 the resting state dynamics and the “deterministic skeleton” is the set
130 of transitions between these macrostates. Taken together they thus
131 include the geometry and topology of the trajectories, as well as
132 their convergence properties indicating stability. One can view the en-
133 semble of dynamic repertoire and skeleton as a graph composed of
134 macrostates on the nodes and the edges indicating the possible transi-
135 tions. Such a visualization is effectively a discrete representation of the
136 continuous time evolution of the brain network in its state space.
137 Ghosh et al. (2008) named the noise driven exploration of such a
138 brain dynamics graph “the exploration of the dynamic repertoire of
139 the human brain” due to the similarity between the resting state pat-
140 terns and network activations known from task-related conditions.
141 Initial interpretations of neuronal dynamics have mainly focused
142 on attractor dynamics (Amit, 1989; Hopfield, 1982), leading to a
143 clear hypothesis concerning the organization of the brain state space.
144 Nevertheless, it soon appeared that transients and metastability play
145 an important role due to e.g. high dimension or sparse connectivity

146(Friston, 1997; Tsuda, 2001). This leads to the proposal that such a com-
147plex coordinated system as the brain is best understood as amultistable
148and metastable system at many levels from multifunctional neural
149circuits to large-scale neural circuits (Kelso, 2012). Nevertheless, these
150proposals have been quantitatively compared with real data (fMRI,
151EEG or MEG) mainly on the basis of the comparison of time-series of
152spectral contents (Freyer et al., 2011) or the comparisons of covariance
153matrices (functional connectivity) (Deco and Jirsa, 2012) between
154experiment and model. For example, Deco and Jirsa (2012) recently
155correlated the functional connectivity matrices of the simulated brain
156network data with the experimental BOLD signals and obtained high
157correspondence. They also demonstrated the existence of five resting
158state patterns for an elevated value of coupling strength but also
159found that the best fit of functional connectivity is obtained at a lower
160level of coupling, i.e. when the resting state patterns do not exist as
161stable states in the state space, but are close to their creation
162(a so-called bifurcation). For this reason, Deco and Jirsa named them
163ghost attractors, which comprise the dynamic repertoire of the brain
164network. Here a subtle distinction plays an important role: These
165ghost attractors are assumed to exist due to their parametric proximity
166to the bifurcation. This situation is called criticality. The assumption
167behind this hypothesis is that below the bifurcation point (subcritical)
168and above (supercritical), the density of the trajectories in the state
169space changes smoothly. Though this assumption is reasonable, it still
170remains to be shown that the ghost attractors indeed exist in the sub-
171critical regime. Once their existence, and thus the dynamic repertoire,
172is established, then this will be the first step towards the full character-
173ization of the trajectories within the state space connecting the ghost
174attractors, and hence the full characterization of the spatiotemporal
175brain dynamics.
176As we illustrated above, although the presence of a spatio-temporal
177organization in brain activity has clear empirical support, the under-
178standing and interpretation of this organization remains an open
179problem. Moreover, the deterministic dynamical skeleton in the state
180space is not easily characterized at the level of scalar metrics (spectral
181analysis or even correlation) and render the comparison of model and
182empirical brain activity in its state space indispensable. From the view
183point of dynamical system theory the only unambiguous representa-
184tion of a dynamic system is given by its flow in the state space. Said
185differently, two dynamical systems are different from each other if
186and only if the topology of their flow is different. If not, then they
187belong to the same class of systems. The flow prescribes the evolution
188of the state vector of the system as a function of its current state and is
189most commonly written as a set of differential equations. In terms of
190state space analysis, two approaches are typically taken in the litera-
191ture. The first approach is based on nonlinear time series analysis de-
192rived from dynamical systems theory (see e.g. Kantz and Schreiber
193(2004)) and has mostly focused on the properties of continuous
194trajectories in the brain's state space. The second approach is based
195on the stochastic approach of dynamical systems (Lasota and Mackey,
1961994). The main difference between these two complementary
197approaches lies in the fact that the first one supposes a differential
198structure of the trajectory, whereas the second one does not and thus
199allows one to link dynamical systems and stochastic processes. The
200stochastic approach of dynamical systems thus becomes a natural
201theoretical setting for the characterization of brain dynamics all the
202more that high dimensional dynamics can be hardly differentiated
203from stochastic processes (Lachaux et al., 1997). Nevertheless, there
204are subtleties that go beyond the scope of this article, but should be
205kept in mind when interpreting data. To some extent noise, which is
206invariably present in biological systems, can obscure the underlying
207difference but not always: A subcritical bifurcation is only smoothed
208into an apparent supercritical bifurcation by additive noise of a suffi-
209cient amplitude — otherwise the discontinuity of the former remains.
210In the presence of multiplicative noise, the statistics of the system
211will be also qualitatively different. Similarly, the symmetry of noise
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