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We demonstrate the capacity of dynamic causal modeling to characterize the nonlinear coupling among cor-
tical sources that underlie time–frequency modulations in MEG data. Our experimental task involved the
mental rotation of hand drawings that ten subjects used to decide if it was a right or left hand. Reaction
times were shorter when the stimuli were presented with a small rotation angle (fast responses) compared
to a large rotation angle (slow responses). The grand-averaged data showed that in both cases performance
was accompanied by a marked increase in gamma activity in occipital areas and a concomitant decrease in
alpha and beta power in occipital and motor regions. Modeling directed (cross) frequency interactions be-
tween the two regions revealed that after the stimulus induced a gamma increase and beta decrease in occip-
ital regions, interactions with the motor area served to attenuate these modulations. The difference between
fast and slow behavioral responses was manifest as an altered coupling strength in both forward and back-
ward connections, which led to a less pronounced attenuation for more difficult (slow reaction time) trials.
This was mediated by a (backwards) beta to gamma coupling from motor till occipital sources, whereas
other interactions were mainly within the same frequency. Results are consistent with the theory of predic-
tive coding and suggest that during motor imagery, the influence of motor areas on activity in occipital cortex
co-determines performance. Our study illustrates the benefit of modeling experimental responses in terms of
a generative model that can disentangle the contributions of intra-areal vis-à-vis inter-areal connections to
time–frequency modulations during task performance.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Studying task-dependent communication between brain regions
is essential to link behavior with its accompanying neural activity.
Using non-invasive recording techniques like M/EEG recordings one
can characterize distinct rhythmic activities that differ with region
and modulate with task. To estimate the coupling strength between
regions or sources, most studies concentrate on iso-frequency con-
nections, which are relatively easy to address and to interpret. For
example, cross-regional information transfer can be treated by as-
suming a simple linear response system and connectivity can be
determined through standard regression techniques. However, by
definition, these approaches are blind to cross-frequency interactions.
Moreover, directionality of connections is often ignored although it is

considered important, if not essential, for neural functioning. Recent
advances that address directionality in the analysis of M/EEG data
include, e.g., Granger causality, the directed transfer function, and
the phase slope index (Nolte et al., 2008). Likewise the introduction
of generalized phase coupling (Tass et al., 1998), and empirical
findings of cross-frequency phase–amplitude (Canolty and Knight,
2010; Jensen and Colgin, 2007), and amplitude–amplitude correla-
tions (Bruns and Eckhorn, 2004; de Lange et al., 2008), underscore
the relevance of multi-frequency coupling for neural functioning.

Alternatively, one might follow a slightly different route by first for-
malizing explicit models that are supposed to generate empirically ob-
served neural activity and use the structure and parameters of these
models to infer effective connectivity in a (small) network of regions.
In doing so, knowledge about neuroanatomy and the neurophysiologi-
cal processes atwork can be incorporated. Fitting themodel to observed
data gives an estimate of its parameters that quantify the coupling
strength within and between regions. This is standard procedure in
the vast field of system identification and forms the rationale behind
dynamic causal modeling (DCM); where different configurations of
sources and their connections are tested to find themost likely network
generating observed task-related responses.
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DCM was initially developed for the analysis of fMRI data (Friston
et al., 2003) that – to a good approximation – can be modeled with
first-order, linear differential neuronal state equations, and more de-
tailed hemodynamic response functions. In more recent work this
approach has been extended to model evoked responses in both
EEG and MEG (David et al., 2006). Due to high temporal resolution
of M/EEG recordings, the neural state equations are replaced by neu-
rophysiologically more realistic, neural mass models based on studies
by Jansen and Rit (1995). Subsequently, DCM has been adjusted to
other data features: cross-spectral densities underlying steady
state-responses (Moran et al., 2009), complex-valued cross-spectral
densities (Friston et al., 2012), time-resolved modulations of spectral
power (Chen et al., 2008), and synchronization by means of phase
coupling (Penny et al., 2009).

Here, we demonstrate the capacity of DCM to investigate time–
frequency modulations in visual and motor areas during motor imag-
ery. The experimental task under study involved the mental rotation
of hand drawings as described by de Lange et al. (2008). Subjects used
mental rotation in order to report whether the drawing contained a
left or right hand. Reaction times typically increased when the images
were shownwith a larger rotation angle. Executing the task induced a
strong increase in gamma activity over visual areas, and a decrease in
alpha and beta activity in both visual and motor areas. de Lange et al.
(2008) also found a negative correlation between occipital gamma
and beta activity in the motor cortex that became stronger over
time after stimulus onset and dissolved just before response onset.
To disentangle directional cross-frequency couplings underlying these
time–frequency modulations, we employed DCM and contrasted trials
with short and long reaction times. Do trials with fast and slow reaction
times differ in time–frequencymodulations after stimulus presentation,
and if so, are slow reaction times associated with altered forward (from
visual to motor cortex) and/or backward (from motor to visual cortex)
information processing?

Methods

Behavioral task and recordings

de Lange et al. (2008) have described the experiment in detail.
Briefly, twelve subjects performed a motor imagery task in which
they needed to identify line drawings of a human hand as a left or
right hand. The drawings were presented with five different rotation
angles between 40 and 180°. Each trial started with a 3 s baseline
period, after which a drawing of a hand was presented. The task
required mental rotation of the hand drawing, since subjects were
instructed to respond as fast as possible after recognizing the
laterality of the hand by pressing one of two buttons with the right
hand. The hand was presented either with the palm or the back facing
forward and was displayed until a response was given. In total, 800
trials were performed in a random order. Brain activity was recorded
using a 151-channel CTF MEG system. Data were sampled at a rate of
1200 Hz after online low-pass-filtering with 300 Hz. The electro-
oculogramwas co-recorded to identify trialswith excessive eyemove-
ments and trials containing artifacts were discarded offline. Head po-
sition was localized at the start and end of the recording session, using
coils on the nasion and pre-auricular points. In addition, individual
structural MRI scans were obtained. Here we re-analyzed the data
from the original paper using Matlab (version R2007b, MathWorks,
Natwick, MA) and SPM8 (Update revision number 4667, http://
www.fil.ion.ucl.ac.uk/spm, Litvak et al., 2011).

Source localization

de Lange et al. (2008) found an increase in gamma activity
(50–80 Hz) over occipital areas peaking shortly after stimulus onset,
and a sustained decrease in beta activity (16–24 Hz) over occipital/

parietal and motor areas before response onset. To localize the
origin of these modulations, we used a linearly constrained minimum
variance beamformer (Hillebrand and Barnes, 2005). For the gamma
band we selected the time interval between 100 and 600 ms
after stimulus onset (at 0 ms) and for the beta band the time interval
−700 to −200 ms before response onset. The localized power in
these intervals was contrasted against that during the −500 to
0 ms pre-stimulus baseline interval. The beamformer grid resolution
was set to 10×10×10 mm using the individual MRI scans. To
allow post-hoc averaging over subjects (see below) the individual
beamformer images were transformed to template space. Values
on the grid were then interpolated using linear interpolation to
produce volumetric images with 2 mm resolution (without further
smoothing). The resulting images of source power differences be-
tween active and baseline intervals were averaged over subjects.
We found large power differences in left and right visual cortex
(from here on referred to as ‘O’ for occipital) as well as sources in
left and right sensorimotor cortex (referred to as ‘M’ for motor). See
Fig. 1 for their specific locations. In addition, left and right parietal
sources could be discerned, which revealed time–frequency spectra
that closely resembled that of the sources in sensorimotor areas.
Given the similarity between parietal and motor responses, we fo-
cused on the motor regions in subsequent DCM analyses. Locations
of the sources in individual subjects were identified as the closest to
the mean peak location over subjects. For one subject no clear right
O source could be identified. Likewise, for three subjects no right M
source could be detected. In these cases, unilateral sources were
used for subsequent analyses. Finally, source time series were
extracted for all selected trials using beamformer weights that were

Fig. 1. Source locations used for DCM. The crosshairs indicate the peak locations of the
grand-averaged power contrast images. Top row: beta band (16–24 Hz) decrease in M
[left: −37 −25 39 mm; right: 34 −28 37 mm]. Bottom row: gamma band (50–80 Hz)
increase in O [left: −18 −71 −5 mm; right: 14 −69 −2 mm]. Sources in individual
subjects were identified as the closest to these locations (mean Euclidean distance
from the grand-averaged peak locations: left M: 15 mm; right M: 18 mm; left O: 14 mm;
right O: 13 mm).
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