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Minimum variance beamformers are popular tools used in EEG and MEG for analysis of brain activity. In re-
cent years new multi-source beamformer methods were developed, including the Dual-Core Beamformer
(DCBF) and its enhanced version (eDCBF). Both techniques should allowmodeling of correlated brain activity
under a wide range of conditions. However, the mathematical justification given is based on single-source re-
sults and computer simulations, which do not provide an insight into the assumptions involved and the limits
of their applicability. Current work addresses this problem. Analytical expressions relating actual source
parameters to those obtained with the DCBF and eDCBF are derived, and rigorous conclusions regarding
the accuracy of the DCBF/eDCBF reconstructions are made. In particular, it is shown that DCBF accurately
identifies source coordinates, but amplitudes and orientations are only correct for high SNRs and fully corre-
lated sources. In contrast, eDCBF source localization is inaccurate, but if the source positions are found pre-
cisely, eDCBF allows perfect reconstruction for arbitrary SNRs. If the source positions are approximate, the
reconstruction errors are generally larger for higher SNR values. The eDCBF results can be improved by
using global unbiased localizer functions and an alternative way of estimating source orientations.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Linear adaptive spatial filters are becoming popular source-imaging
tools for electroencephalography (EEG) and magnetoencephalography
(MEG) studies. These filters, also known as beamformers, reconstruct
electrical activity in locations inside the brain based on the signals
recorded by an array of sensors positioned outside the head (MEG) or
mounted on the head surface (EEG). In particular, minimum variance
beamformers (Greenblatt et al., 2005; Herdman and Cheyne, 2009;
Huang et al., 2004; Robinson and Vrba, 1999; Sekihara and Nagarajan,
2008; Van Veen et al., 1997) proved to be very effective in a variety of
practical situations for estimating neural generators. Mathematically
the problem of reconstructing electrical sources inside the brain based
on the fields observed outside the head is ill posed and cannot be solved
withoutmaking additional assumptions about the sources (Baillet et al.,
2001; Greenblatt et al., 2005). In particular, commonly used Linearly
Constrained Minimum Variance (LCMV) filters (Van Veen et al.,
1997), Spatial Aperture Magnetometry (SAM) filters (Robinson and
Vrba, 1999) and their variations (Herdman and Cheyne, 2009; Huang
et al., 2004; Sekihara andNagarajan, 2008) are based on the assumption
that the sources are uncorrelated or statistically orthogonal.

In practice this assumption is often violated because when a cogni-
tive or perceptual task is performed many brain regions are involved

and often exhibit correlated activity. A commonly described example
of source correlation occurs as a result of bilateral sensory areas
being activated simultaneously for visual or auditory stimuli (see for
example Quraan and Cheyne, 2010; Herdman et al., 2003), especially
in situations where synchronized activations are sustained for long
time periods, as seen in the auditory steady state response (ASSR)mea-
surements (Herdman et al., 2003).

Significant source correlations adversely affect performance of
the conventional minimum variance beamformers. In particular, cor-
related sources tend to cancel each other leading to decreased signal-
to-noise ratio (SNR) and distorted time courses (Hillebrand and
Barnes, 2005; Sekihara et al., 2002; Van Veen et al., 1997). Technical-
ly, this happens because the filter weight coefficients are found
independently for each location, implicitly assuming that the source
at the target location is the only one. In other words, conventional
beamformers are “single-source”. To improve the beamformer perfor-
mance in the presence of correlated activity, other sources should
somehow be accounted for in the filter-weight calculations, making
the beamformer “multisource”.

One way to implement multisource beamformers is to derive the
weights using a linear combination of the lead fields of possible sources
(Brookes et al., 2007). This approach allowed accurate localization of a
pair of highly correlated sources but it becomes computationally expen-
sive with an exponentially increasing amount of calculations, as the
number of potential sources grows. Diwakar et al. (2011a) suggested
a modification of this method, which treats a pair of the source lead
fields as a single higher-dimensional lead field and also reduces the
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number of calculations involved. The authors called this a dual-core
beamformer (DCBF).

Another approach is the multiple constrained minimum variance
(MCMV) beamformer, originating from the field of radar detection
(Frost, 1972) and successfully applied to the EEG/MEG inverse prob-
lem in the recent years (Dalal et al., 2006; Hui et al., 2010; Moiseev
et al., 2011; Popescu et al., 2008; Quraan and Cheyne, 2010). The
MCMV beamformer weights are calculated under the constraint that
the filter gains for signals originating from other source locations, or
even from extended brain regions are (approximately) zero. This
way the correlated interference at the target location, which is the
main cause of problems for the single-source beamformers, is elimi-
nated. A newer version of DCBF called the “enhanced” DCBF (eDCBF,
Diwakar et al., 2011b) also imposes such constraints on the weights,
and therefore belongs to the MCMV family. Although multi-source
beamformers proved successful for reconstruction of bilateral activa-
tions of visual and auditory sensory areas (Popescu et al., 2008;
Quraan and Cheyne, 2010) and in functional connectivity analysis
(Hui et al., 2010), they have not become widely accepted practice
likely due to at least two reasons.

First, in most cases the source locations are not known a priori, and
the beamformer itself should be used to find them. For the
single-source filters this is done by an exhaustive search over the en-
tire brain volume. In multi-source beamforming such “brute force”
approaches are currently unfeasible given the typical computing
power in most laboratories, as the number of dimensions of the
searched parameter space grows exponentially with the number of
sources.

Second, the choice of brain activity measure, or the localizer func-
tion used to find sources is not obvious. The localizer function should
reach its maximum when the true source parameters are matched.
For the single-source beamformers such unbiased localizers are
known, for example, the pseudo-Z ratio and the neural activity
index (Greenblatt et al., 2005; Sekihara et al., 2005). In the
multi-source cases various forms of the single-source localizers
were still applied (Dalal et al., 2006; Popescu et al., 2008; Quraan
and Cheyne, 2010) although their unbiased property was not
established. Recently several unbiased multi-source localizers were
derived by Moiseev et al. (2011).

The present paper investigates the validity of DCBF and eDCBF
(Diwakar et al., 2011a,b) methods. Each of them addresses the above
problems differently and suggests its own localizer function, source
search algorithm, and amplitudes and orientations reconstruction pro-
cedure. Although these suggested solutions could improve computa-
tional speed, the justification given is based on the single-source not
multi-source results, and is mainly supported by numerical experi-
ments. In this work, we investigated DCBF and eDCBF methods analyt-
ically. For the general case of arbitrary number of correlated sources,
we analyzed the DCBF and eDCBF localizer functions to verify that
they are unbiased, and tested the accuracy of amplitudes, orientations,
and correlations. However, we did not investigate the DCBF/eDCBF
source search algorithms as these are general numerical methods not
specific to the bioelectromagnetic inverse problem. Furthermore, we
looked at non-ideal situations where the source localization or covari-
ance matrix estimates might be approximate. Analytical results were
confirmed using computer simulations.

Methods

Minimum variance linear filter solutions

The following notation is used throughout this paper. Vectors and
matrices are specified in lower and upper-case bold letters respec-
tively (i.e. a and A), while scalar quantities, including the components
of vectors and matrices — in regular letters (for example, t, ai, Aij, P).
Additionally, we use the symbol “hat” (“^”) to distinguish an estimate

of some quantity rather than its true value, which might be not
known.

Let b(t) denote the M-dimensional column vector of the EEG or
MEG sensor readings at time t, whereM is the number of sensors. As-
sume that b(t) is generated by n0bM possibly correlated point dipolar
sources si(θi,t),i=1,…,n0 plus noise ν(t):

b tð Þ ¼
Xn0
i¼1

si θi; t
� �

hi θi
� �

þ v tð Þ: ð1Þ

In Eq. (1) si(θi,t) is an instantaneous amplitude of the source. Vector
θi includes both source position ri and orientation ui: θi={ri,ui}, ui

being a unit vector. The M-dimensional column vectors hi(θi), ν(t) de-
fine source leadfields and the noisemeasured by the array, respectively.
Additionally, we assume that the source parameters θi={ri,ui} do not
change with time and that the zero-mean random processes si(θi,t),
ν(t) are stationary and uncorrelated: 〈si(θi,t)〉=0, 〈v(t)〉=0, 〈siv〉=0,
i=1,…,n0, where the angle brackets denote statistical averaging.

Given the model described by Eq. (1), the goal is to solve the inverse
problem of finding parameters θi and the amplitudes si(θi,t) that explain
themeasuredfield b(t). A solution to this problem in the linear adaptive
minimum variance filter approach may be summarized as follows
(Robinson and Vrba, 1999; Sekihara and Nagarajan, 2008; Sekihara et
al., 2004; Van Veen et al., 1997). An estimate ŝi for the unknown ampli-
tude of a source i is sought in the form of a weighted sum of the sensor
array readings:

ŝ i Θ; tð Þ ¼
XM
m¼1

wi
m Θð Þbm tð Þ≡ wi Θð Þ

� �T
b tð Þ ð2Þ

Here wi={w1
i ,…,wM

i }T is the M-dimensional column vector of the
beamformer weights for the source i, and the superscript “T” denotes
transposition. The weights w are supposed to be time-independent,
but they do depend on a set of other parameters encapsulated in a pa-
rameter vector Θ. This set varies depending on the beamformer type,
as will be discussed shortly. Irrespective of a concrete form of Θ, the
weights of theminimum variance beamformers are found by minimiz-

ing the total reconstructed source power P ¼
Xn
i¼1

ŝ2i
D E

subject to cer-

tain constraints. According to Eq. (2), P can be also written as

P ¼
Xn
i¼1

wiTRwi ¼ Tr WTRW
� �

, where R= 〈bbT〉 is the (M×M) covari-

ance matrix of the field measured by the sensor array, and the (M×n)
matrix W has the weight vectors of the individual sources as its col-
umns: W={w1,…,wn}. Note that the assumed number of sources n
(also called the beamformer order) might differ from the true number
of sources n0, which is often unavailable. Specifically, postulating that
n=1 constitutes the conventional single-source case. In this work we
follow the DCBF/eDCBF assumption that the actual number of sources
is known: n=n0.

The minimization of power is performed requesting that wiThi=1,
which means that the filter reconstructs the amplitude of the unit
source at the target location exactly (the unit gain constraint). Nothing
else is needed for the single-source case n=1. If n>1, weights wi are
also required to be orthogonal to the fields of other sources hj, to ensure
signal separation:wiThj=0, j≠ i (the zero gain constraints). The full set
of constraints may be written as a single matrix equation WTH=In,
where (M×n) matrix H has forward solutions of individual sources as
its columns: H={h1,…,hn}, and In is an n-dimensional identity matrix.
TheweightsW thatminimize power P, subject to the above constraints,
constitute the MCMV beamformer solution and are equal to (Frost,
1972; Sekihara and Nagarajan, 2008; Van Veen et al., 1997):

W ¼ R−1HS−1 ð3Þ
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