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Prediction error (i.e., the difference between the expected and the actual event's outcome) mediates adaptive
behavior. Activity in the anterior mid-cingulate cortex (aMCC) and in the anterior insula (aINS) is associated
with the commission of prediction errors under uncertainty. We propose a dynamic causal model of effective
connectivity (i.e., neuronal coupling) between the aMCC, the aINS, and the striatum in which the task context
drives activity in the aINS and the temporal prediction errors modulate extrinsic cingulate–insular connec-
tions. With functional magnetic resonance imaging, we scanned 15 participants when they performed a tem-
poral prediction task. They observed visual animations and predicted when a stationary ball began moving
after being contacted by another moving ball. To induced uncertainty-driven prediction errors, we intro-
duced spatial gaps and temporal delays between the balls. Classical and Bayesian fMRI analyses provided ev-
idence to support that the aMCC–aINS system along with the striatum not only responds when humans
predict whether a dynamic event occurs but also when it occurs. Our results reveal that the insula is the
entry port of a three-region pathway involved in the processing of temporal predictions. Moreover, predic-
tion errors rather than attentional demands, task difficulty, or task duration exert an influence in the
aMCC–aINS system. Prediction errors debilitate the effect of the aMCC on the aINS. Finally, our computational
model provides a way forward to characterize the physiological parallel of temporal prediction errors elicited
in dynamic tasks.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The neural coding of predictive behavior has gained substantial at-
tention in the last decade (Bar, 2009). Research on predictive behavior
includes areas as diverse as neuroeconomics (Platt and Huettel, 2008),
learning (Behrens et al., 2007; den Ouden et al., 2009; O'Doherty et al.,
2001; O'Doherty et al., 2004), and brain function (Friston and Kiebel,
2009). In all these domains, researchers test their theories using
both animal and human models.

Human predictive behavior comprises the prediction of the out-
come of an event: the winner of a football match, whether it will
rain, or which product will sell better. Critically, humans also predict
the temporal dynamics of events. For example, while walking down
the street, a person might witness a rear-end collision. As an anticipa-
tory physiological response, the witness' body may shrink away a few
milliseconds before the collision. The witness not only predicts the
occurrence of the collision but also when the collision occurs.

Prediction error likelihood is associated with a linear increase in
the activity of the anterior mid-cingulate cortex (aMCC, Brown and

Braver, 2005).1 Furthermore, in tasks demanding either time process-
ing (Kosillo and Smith, 2010), the prediction of an event's onset
(Forster and Brown, 2011), or predictions under uncertainty (Singer
et al., 2009) activity in the anterior insula (aINS) increases. For the cur-
rent study, we consider crucial, however, that uncertainty in the out-
comes of future events conjointly increases the activity of the aMCC
and the aINS (Critchley et al., 2001).

The aMCC and the aINS constitute an input–output system
(Medford and Critchley, 2010; Taylor et al., 2009) with anatomical
(Mesulam and Mufson, 1982; Mufson and Mesulam, 1982) and func-
tional (Taylor et al., 2009) reciprocal connectivity. These facts suggest
that effective connectivity (i.e., neuronal coupling) might mediate the
functional aMCC–aINS connectivity in uncertainty-related temporal
prediction tasks. Based upon the observed BOLD responses elicited
during a temporal prediction task that generated different levels of
uncertainty in the participants, we used a dynamic causal modeling
(DCM) approach (Friston et al., 2003) to test two hypotheses. First,
task context (i.e., the main effect of temporal prediction) would
directly increase within-region coupling in the aINS. Second, signals
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1 According to the four-region neurobiological model of the cingulate organization
(Vogt, 2009; Vogt et al., 2003), the aMCC comprises the caudal parts of areas 32, 24,
and 33 encompassed between the vertical plane of the anterior commissure and the di-
agonal from the vertical plane of the genu of the corpus callosum.
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associated with prediction errors would modulate the connection
strength of the aMCC–aINS system.

From a DCM perspective, regional activity in the aMCC–aINS sys-
tem can be produced via either direct or modulatory inputs. The
main effect of an uncertainty-related prediction task is an increment
of the insula's hemodynamic response (Critchley et al., 2001). Thus,
we predicted that a model generating the fMRI data would include
direct inputs to the aINS. In addition, neural activity associated
with prediction errors modulates cortical–cortical (den Ouden et al.,
2009) and cortical–subcortical (den Ouden et al., 2010) connections.
Therefore, we predicted that temporal prediction errors would mod-
ulate aMCC–aINS connections. No previous studies, however, allowed
us to anticipate whether prediction errors would modulate forward
or backward connections. Thus, we evaluated this issue via model
comparison.

Because the BOLD response is unspecific for excitatory and inhib-
itory connections that instantiate cortical activity (Logothetis, 2012).
Our study relied on two assumptions regarding the dynamics of the
synaptic plasticity within and between our regions of interest. First,
synaptic plasticity of cortical within-region intrinsic connections
comprises changes in both excitatory and inhibitory neuronal sub-
populations. Second, between-region extrinsic inter-regional connec-
tions comprise changes mainly in excitatory couplings (Douglas and
Martin, 2004). Thus, we assumed that direct influence of task context
would produce changes in both excitatory and inhibitory connections
whereas temporal prediction errors would cause changes only in
aMCC–aINS extrinsic connections.

We tested our predictions in two stages. First, we identified a set
of inter-regional connections in an optimal DCM. Several candidate
models with different interregional configurations could accommo-
date our hypotheses and assumptions. By means of model compari-
son, we selected the model with the highest probability of having
produced the fMRI data. To represent a more realistic decision making
circuit in the model, we also added connections from the ventral stri-
atum. Second, we tested our optimal model against models with al-
ternative direct and modulatory inputs.

Temporal prediction task

We used a variant of a task that has been traditionally used in re-
search on causation: the Michotte's launching effect task (Thines et
al., 1990). Participants predicted the movement's onset of a stationary
ball contingent to the contact of a second ball. In this basic condition,
themovement's onset of the stationary ball was highly predictable be-
cause the spatiotemporal contiguity between both balls cued the
launching time (see Supplemental Video 1). We introduced different
levels of uncertainty by modifying this basic stimulus in the temporal
and spatial dimensions. In the temporal dimension, we introduced
two delays between the termination of the first ball's movement and
the onset of the stationary ball's movement. Empirical data andmath-
ematical models support the thesis that subjective time is not linearly
related to objective time (Beckmann and Young, 2009; Catania, 1970;
Gibbon, 1977, 1981; Gibbon and Church, 1981; Young et al., 2005).
Failing to predict an objective sensory magnitude produces uncer-
tainty in future predictions (Schultz et al., 2008; Singer et al., 2009),
which increases the probability of committing prediction errors. Al-
though in our task the trial instructions informed the participants on
the duration of the programmed delay, higher uncertainty for longer
delays was expected. In some timing tasks, individual differences
in prediction accuracy arise due to variations in the strategy that par-
ticipants might adopt for time estimation. For example, when partici-
pants are instructed to predict long durations spontaneous language-
based counting increases the accuracy. The use of this chronometric
strategy could confound the interpretation of the fMRI data (Hinton
et al., 2004). In our task, however, chronometric timing unlikely
caused any individual differences because the delays lasted less than

1500 ms. In the spatial dimension, we introduced two different spatial
discontiguities (gaps). The effect of delay depends on the spatial gap
between the objects (Young et al., 2005). Thus, for example, for a
given delay we expected greater uncertainty-driven prediction errors
in the presence of large gaps than in the presence of small gaps.

In this task, the computational value of each prediction error could
produce adjustments in subsequent predictions. More accurate ad-
justments, however, would occur after explicitly delivering objective
feedback (e.g., “your prediction was 230 ms late”) as an instance of
supervised learning. Nevertheless, because we wished to ensure a
high level of error commission across trials for the same condition
(to avoid ceiling effects) we did not deliver feedback after the famil-
iarization trials.

Modeling prediction errors

In previous fMRI studies using prediction errors as either a covari-
ate (e.g., in linear models of the hemodynamic responses) or as exog-
enous inputs (e.g., in dynamic causal models), the experimenters have
not used a direct measure of such errors. They have created continu-
ous distributions of either the prediction errors or the probabilities
of committing such errors. To construct the distributions, they have
estimated the most-likely parameter values of theoretical behavioral
models. Examples of these types of models are the Rescorla–Wagner
model (Rescorla and Wagner, 1972), the temporal difference model
(Sutton and Barto, 1998), and the Bayesian learning models
(Behrens et al., 2007; den Ouden et al., 2010; Mathys et al., 2011). In
the Rescorla–Wagner and the temporal differencemodels, the investi-
gators estimate the free parameters (e.g., the learning rate) and then
use such estimators to compute the prediction errors (O'Doherty
et al., 2007). Conversely, by means of Bayesian learning the investiga-
tors construct distributions of prediction-error probabilities.

Although these strategies account for the behavioral data and serve
the purpose of constructing continuous distributions that enter fMRI/
DCM models, they implicitly rely on the assumption that the models
mirror how the brain executes the tasks. Consequently, the problem
of selecting the best possible behavioral model accompanies these
strategies (see, for example, den Ouden et al., 2010). Because there al-
ways exists a more probable behavioral model that could produce a
prediction-error/probabilities distribution, the investigator remains
uncertain of the exact relationship between the neurophysiological
and the behavioral data. To avoid this problem, we used a model-
free direct measure of temporal prediction errors as a continuous
variable.

Materials and methods

Participants

Fifteen right handed students (10 female), between 19 and
26 years of age (M=21.76, SD=2.26) and with no neurological his-
tory participated in the study. Participants signed informed consent
forms and received a $25 gift card for participating. The study was ap-
proved by the Human Subjects Committee of Southern Illinois Uni-
versity at Carbondale.

Stimuli

The stimulus set consisted of nine types of visual animations
with three gap sizes (0, 1, and 2 cm; 0.0, 0.9, and 1.9° of visual angle
respectively) and three delay durations (0, 300, and 1200 ms). Each
animation lasted 2700 ms and began with two balls appearing on
the computer screen, one ball to the left of the screen and the other
ball in the middle of the screen. Each ball was 1.34 cm (1.28° of visual
angle) in diameter. At the beginning of each animation sequence, the
left-most ball began to move to the right and continued at a constant
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