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Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based
and information-integration categorization tasks. With the development of automaticity, categorization be-
havior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The
present study uses multi-voxel pattern analysis to directly compare the development of automaticity in dif-
ferent categorization tasks. Each of the three groups of participants received extensive training in a different
categorization task: either an information-integration task, or one of two rule-based tasks. Four training ses-
sions were performed inside an MRI scanner. Three different analyses were performed on the imaging data
from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs
with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs
with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring
(1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared
across tasks. The results showed that common patterns of activation were present in motor areas and basal
ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical
and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of
representational similarity between brain regions became increasingly similar across tasks with the develop-
ment of automaticity.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The ability to group objects and other stimuli into classes, despite
their perceptual dissimilarity, is extremely helpful for organizing the
environment and adaptively responding to its demands. For this reason,
categorization has attracted much attention as a subject of behavioral
and neurobiological research. Research in the neuroscience of human
category-learning has shown that a variety of areas are recruited during
learning and performance of categorization tasks, including visual, pre-
frontal, parietal, medial temporal and motor cortices, as well as the
basal ganglia (for reviews, see Ashby and Maddox, 2005; Seger and
Miller, 2010).

Multiple systems of category learning

A body of behavioral and neurobiological evidence suggests that the
brain areas associated with categorization are organized in relatively

separate category-learning systems and that different categorization
tasks engage the systems differently (Ashby and Maddox, 2005;
Nomura and Reber, 2008; Poldrack and Foerde, 2008). Information-
integration (II) tasks, which require the integration of information
from two or more stimulus components at a pre-decisional stage, re-
cruit a procedural-learning system that relies on feedback-based learn-
ing of associations between stimuli and responses. An example is
shown in the top-right panel of Fig. 1, where information about the ori-
entation andwidth of stripesmust be integrated to categorize the stim-
uli correctly. Rule-based (RB) tasks, in which the optimal strategy is
easy to verbalize and can be learned through a logical reasoning pro-
cess, recruit a declarative-learning system that is based on explicit rea-
soning and hypothesis testing. An example is shown in the bottom-left
panel of Fig. 1, where the simple verbal rule “respond A if the stripes are
narrow and B if the stripes are wide” can solve the task.

The COVIS model of category learning (Ashby et al., 1998; for recent
versions of themodel, see Ashby et al., 2011; Ashby and Valentin, 2005)
is a formal description of these two learning systems and the brain re-
gions subserving each of them. Learning of sensory-motor associations
in the COVIS procedural system is implemented in the synapses from
visual sensory neurons onto medium spiny neurons in the striatum,
the input structure of the basal ganglia. The output of the basal ganglia
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controls motor responses through its influence on premotor areas,
via the ventral lateral and ventral anterior thalamic nuclei. Learning
through explicit reasoning and hypothesis testing in the COVIS declara-
tive system is implemented in a network of frontal, medial temporal
and basal ganglia areas. Candidate rules are maintained in working
memory representations in the lateral PFC, via a series of reverberating
loops through the medial dorsal nucleus of the thalamus. These rules
are selected from among all available rules via a network that includes
the anterior cingulate cortex. If evidence is accumulated that a particu-
lar rule does not lead to accurate performance, the rule is switched by
reducing attention to it via frontal input to the head of the caudate nu-
cleus, which ultimately inhibits the thalamic-PFC loops in charge of
working memory maintenance.

Many behavioral studies have found dissociable effects of experi-
mental manipulations in RB and II tasks. For example, switching the lo-
cations of response keys after categorization learning interferes with
performance in II tasks, but not with performance in RB tasks (Ashby
et al., 2003; Maddox et al., 2004), suggesting that category learning is
tied to specific motor responses only in the former. Learning in II tasks
is also disrupted if feedback is absent (Ashby et al., 1999), presented be-
fore the stimulus (Ashby et al., 2002) or delayed by a few seconds
(Maddox et al., 2003). The same manipulations have smaller or no
effects in RB tasks. On the other hand, asking participants to perform a
simultaneous task during category learning, which demands working
memory and attention, interferes more with RB tasks than with II
tasks (Waldron and Ashby, 2001). Similarly, dual-task interference
has been found for declarative, but not implicit knowledge about a
probabilistic categorization task (Foerde et al., 2007).

Neurobiological studies also suggest that the brain areas involved in
category learning differ for II and RB tasks. For example, in the only fMRI
study that has directly contrasted task-related activity in II and RB tasks,
Nomura et al. (2007) found that activity in the hippocampus, anterior
cingulate cortex, middle frontal gyrus and body of the caudate all corre-
lated with successful performance in the RB task, whereas only activity
in the body and tail of the caudate correlated with successful perfor-
mance in the II task. Direct comparison of task-related activity between
the tasks in several regions of interest (ROIs) revealed higher activity for
the RB than the II task in the hippocampus, and higher activity for the II
than the RB task in the caudate, suggesting a dissociation between a
hippocampal-based declarative system and a basal ganglia-based pro-
cedural system in category learning.

Several other studies have found results that are generally in agree-
ment with COVIS. During the early stages of learning of RB categoriza-
tion tasks, accuracy is found to be correlated with activation in the
hippocampus, head of the caudate, dorsolateral prefrontal cortex, ven-
trolateral prefrontal cortex, and posterior parietal cortex (Filoteo et al.,
2005; Helie et al., 2010a; Seger and Cincotta, 2006). On the other
hand, activity during learning of II tasks increases in the body and tail
of the caudate, and in the putamen (Cincotta and Seger, 2007;
Waldschmidt and Ashby, 2011).

Other studies have used a “weather prediction” categorization
task, in which feedback about category membership is usually proba-
bilistic. Participants can use a variety of strategies to achieve good
performance in this task (Gluck et al., 2002) and neuroimaging stud-
ies suggest that dissociable learning systems might underlie such
strategies (for a review, see Poldrack and Foerde, 2008). For example,

Fig. 1. Information about the tasks and stimuli used in the present study. The top-left panel shows an example stimulus. The other three panels show the category structures in each
of the tasks. Dashed lines represent optimal bounds separating the two categories and different colors represent different clusters of stimuli revealed by a k-means cluster analysis
(see Neuroimaging analysis section).
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