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Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify properties of tissue
microstructure that may not be observable using diffusion tensor imaging (DTI). In order to help design DKI
studies and improve interpretation of DKI results, we employed statistical power analysis to characterize
three aspects of variability in four DKI parameters; the mean diffusivity, fractional anisotropy, mean kurtosis,
and radial kurtosis. First, we quantified the variability in terms of the group size required to obtain a statis-
tical power of 0.9. Second, we investigated the relative contribution of imaging and post-processing noise
to the total variance, in order to estimate the benefits of longer scan times versus the inclusion of more sub-
jects. Third, we evaluated the potential benefit of including additional covariates such as the size of the struc-
ture when testing for differences in group means. The analysis was performed in three major white matter
structures of the brain: the superior cingulum, the corticospinal tract, and the mid-sagittal corpus callosum,
extracted using diffusion tensor tractography and DKI data acquired in a healthy cohort. The results showed
heterogeneous variability across and within the white matter structures. Thus, the statistical power varies
depending on parameter and location, which is important to consider if a pathogenesis pattern is inferred
from DKI data. In the data presented, inter-subject differences contributed more than imaging noise to the
total variability, making it more efficient to include more subjects rather than extending the scan-time per
subject. Finally, strong correlations between DKI parameters and the structure size were found for the cingu-
lum and corpus callosum. Structure size should thus be considered when quantifying DKI parameters, either
to control for its potentially confounding effect, or as a means of reducing unexplained variance.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion kurtosis imaging (DKI) is a technique that has been sug-
gested to show higher sensitivity and specificity than diffusion tensor
imaging (DTI) in detecting and differentiating alterations of tissue mi-
crostructure (Cauter et al., 2012; Cheung et al., 2009; Grossman et al.,
2012; Wang et al., 2011; Wu and Cheung, 2010). Being an extension
of DTI, DKI provides conventional DTI-based parameters, such as the
mean diffusivity (MD) and the fractional anisotropy (FA), and unique
parameters that describe the degree to which the water diffusion is
non-Gaussian. This information is most commonly represented by
the mean diffusional kurtosis (MK) and radial diffusional kurtosis
(RK) (Jensen and Helpern, 2010; Jensen et al., 2005), that can be

related to properties of the tissue microstructure, for example, the
axonal water fraction and the tortuosity of the extracellular space in
white matter (WM) (Fieremans et al., 2011). In its application to clin-
ical research, DKI has rendered promising results in studies of, for ex-
ample, reactive astrogliosis (Zhuo et al., 2012), age-related diffusional
changes (Falangola et al., 2008), and has been reported to outperform
conventional DTI in the detection of Parkinson's disease (Wang et al.,
2011) and in the grading of gliomas (Cauter et al., 2012). DKI has also
been performed outside of the brain, for example, in the spinal cord
(Hori et al., 2012; Szczepankiewicz et al., 2011).

In light of the emerging popularity of DKI, it is interesting to eluci-
date the statistical characteristics of the extracted parameters. Using a
statistical power analysis, the variability of any parameter can be
evaluated in terms of, for example, the minimal group size required
to detect a true difference in means (effect size) at a predefined prob-
ability (statistical power) (Cohen, 1976; Lenth, 2001; Maxwell et al.,
2008). It may also inform better interpretation of experimental re-
sults by complementing statistical significance tests with information
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about the probability at which the test successfully rejects a false null
hypothesis (Cohen, 1976).

A prerequisite to perform a power analysis is knowledge of the pa-
rameter variance and relevant effect size. Several studies have been
dedicated to analyzing variability in DTI parameters. Heiervang et al.
(2006) performed a statistical power analysis for several WM struc-
tures and various tracking methods, showing that inter-subject coef-
ficients of variation (CV) for MD and FA were below 8% and 10%,
respectively. Variations in the mean and standard deviation of DTI pa-
rameters have also been demonstrated within WM structures (Colby
et al., 2012; Corouge et al., 2006; Wakana et al., 2007). Wakana
et al. (2007) investigated the reproducibility in FA and structure
size in several WM structures, and found that a 10% difference in
fiber-bundle volume required a group size 10 times larger than that
required to detect a 10% difference in FA, indicating a higher variance
in the size parameter compared to FA. Variability is also introduced by
the hardware and the post-processing of data. Pfefferbaum et al.
(2003) compared within- and between-scanner reliability on two
similar but not identical scanners, and reported a systematic mean
bias across scanners with CVs of 7.5% and 4.5% for MD and FA, respec-
tively. Few studies have analyzed the variability of DKI-specific pa-
rameters, however, data reported by Lätt et al. (2012), on the mean
and standard deviations in 21 manually segmented structures, can
be used to calculate CVs for the most frequently used DKI parameters.
The CV, averaged across all structures, was the lowest for MD andMK,
with values of 5% and 8%, respectively, and the highest in FA and RK
with values of 10% and 14%, respectively. These values indicate that
the variability in MK and RK is larger but comparable to that found
for MD and FA. However, more detailed information could improve
study design and aid the interpretation of experimental results.

The aim of this study was, therefore, to evaluate three aspects of
DKI parameter variability: the global and along-tract variability, the
inter- and intra-subject variability, and the amount of variability
explained by the WM structure size. The results were used to esti-
mate the minimal group sizes required to find a physiologically rele-
vant effect size, to quantify the advantage of increasing group size
versus extending scan time per subject, and to estimate whether
the introduction of additional covariates, such as the structure size,
may lower demands on group size. The study was based on three
major WM structures in the brain, defined using tractography-based
segmentation.

Theory

Statistical power and group size

The power of a statistical test (π) represents its probability to cor-
rectly reject the null-hypothesis, i.e., “there is no significant difference
in means between two groups”. For a t-test, π can be estimated from
the t statistic and the number of samples in each group, here referred
to as the group size (n), given a predefined significance level (α) and
an effect size defined as the absolute (Δμ) or relative (Δμ/μ) differ-
ence in group means, respectively. The t statistic used for testing
whether the means of two groups are significantly different is given
by

t ¼ Δμ
SE Δμð Þ ¼

Δμffiffiffiffiffiffiffiffiffiffiffiffi
2V=n

p ; ð1Þ

where SE(Δμ) is the standard error of the difference in group mean
values, given by SE(Δμ) = (2V/n)1/2 if the two groups are equal in
size and have equal variance (V) (Vittinghoff et al., 2005).

Statistical power analysis may also be used to predict how amodifi-
cation to an experimental protocol will influence the minimal group
size. Below, we analyzed the influence on group size requirements

from study-design alterations such as extending the acquisition time
or correcting for hidden covariates.

Parameter variance

Since the statistical power is related to the variance of the param-
eter under investigation, reducing the variance will reduce the re-
quired group size. The measured parameters can be modeled by a
stochastic variable Y, described by the population mean (μ), the
group-dependent deviation from the mean, that is the effect size
(Δμ), and a stochastic error term (Etotal), according to

Y ¼ μ þ Δμ·Gþ Etotal; ð2Þ

where G = [0,1] is a discrete index of group affiliation (G = 0 for
controls and G = 1 for the experimental or patient group)
(Vittinghoff et al., 2005). The error term can be described by a
two-level random-effects model, where Etotal is the sum of two inde-
pendent error terms Etotal = Einter + Enoise (Clayden et al., 2006; Laird
and Ware, 1982). Here, Einter and Enoise represent the inter-subject var-
iability and the variability introduced by imaging and post-processing
noise, with variances Vinter and Vnoise, respectively. The total variance
is thus the sum of the inter-subject and noise variances, according to

V total ¼ V inter þ Vnoise: ð3Þ

Estimating the total variance in a new acquisition protocol (V′total)
is possible by studying how the noise component is modified,
according to

V ′total gð Þ ¼ V inter þ
Vnoise

g2
: ð4Þ

Two important factors affecting g are the signal-to-noise ratio per
signal acquisition (SNR), and the acquisition time (T) of the new and
the old protocol: g ∝ (T′/T)1/2 ∙ (SNR′/SNR), assuming that T is pro-
portional to the total number of acquired images. The factor g, and
the new group size (n′) both have an effect on the denominator in
Eq. (1), according to

SE Δμ ′ð Þ ¼ SE Δμð Þ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−RVnoise· 1− 1

g2

� �� �
·
n
n′

s
; ð5Þ

where RVnoise = Vnoise/Vtotal is the relative variance contribution
from noise in the old protocol. Assuming large groups, the new and
old protocol will have equal power if SE(Δμ′) = SE(Δμ), and the
new group size will be given by

n′ ≈ n· 1−RVnoise· 1− 1
g2

� �� �
: ð6Þ

Eq. (6) shows that an increase in g has the strongest effect on n′
when RVnoise is relatively large, that is whenmost of the total variance
is due to noise. In other words, for a fixed statistical power, an in-
crease in SNR or T can reduce the demand on group size n′. Likewise,
a reduction in total scan time would increase the demand on the
group size.

Parameter covariance

DKI parameters are influenced by properties of the tissue micro-
structure (Fieremans et al., 2011), butmay also be affected by other fac-
tors, such as the partial volume effect (PVE) (Cao and Gold, 2008; Vos
et al., 2011), image distortions, subject motion and post-processing,
amongmany others (Jones and Cercignani, 2010). Some of these effects
may be corrected for by expanding the model in Eq. (2) to include
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