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Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from
neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience,
brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more
than one level, i.e., both in individual subjects and in the population from which these subjects were sampled.
Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-
effects (between-subjects) variance components.Whilemodels of this sort are standard inmass-univariate analyses
of fMRI data, they have not yet receivedmuch attention in multivariate classification studies of neuroimaging data,
presumably because of the high computational costs they entail. This paper extends a recently developed hierarchi-
cal model for mixed-effects inference in multivariate classification studies and introduces an efficient variational
Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally
simple to use as, yetmore powerful than, a conventional t-test on subject-specific sample accuracies, and computa-
tionally much more efficient than previous sampling algorithms and permutation tests. Our approach is indepen-
dent of the type of underlying classifier and thus widely applicable. The present framework may help establish
mixed-effects inference as a future standard for classification group analyses.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Multivariate classification algorithms have emerged from thefield of
machine learning as powerful tools for predicting cognitive or patho-
physiological states from neuroimaging data (Haynes and Rees, 2006).
Classifiers are based on decoding models that differ in two ways from
conventional mass-univariate encoding analyses based on the general
linear model (GLM; Friston et al., 1995). First, multivariate approaches
explicitly account for dependencies among voxels. Second, they reverse
the direction of inference, predicting a contextual variable from brain
activity (decoding) rather than the other way around (encoding).
There are three related areas of application in which these two charac-
teristics have sparked most interest.

In cognitive neuroscience, and in particular neuroimaging, classifiers
have been employed to decode subject-specific cognitive or perceptual
states frommultivariatemeasures of brain activity, such as those obtained
by fMRI (Brodersen et al., 2012b; Cox and Savoy, 2003; Haynes and Rees,
2006; Norman et al., 2006; Tong and Pratte, 2012). A second area is the

design of brain–machine interfaces which aim at decoding subjective
cognitive states (e.g., intentions or decisions) from trial-wise measure-
ments of neuronal activity in individual subjects (Blankertz et al., 2011;
Sitaram et al., 2008). A third important domain concerns clinical applica-
tions that explore the utility of multivariate decoding approaches for
diagnostic purposes (Davatzikos et al., 2008; Klöppel et al., 2008, 2012;
Marquand et al., 2010). Recently, decoding models have also been inte-
grated with biophysical models of brain function, such as dynamic causal
models (Friston et al., 2003), to afford mechanistically interpretable
classifications (Brodersen et al., 2011a,b).

Many applications ofmultivariate classification operate on datawith
a two-level hierarchical structure. Consider, for example, a study in
which a classification algorithm is used to decode from fMRI data
whether a subject chose option A or B on each of n experimental repeti-
tions or trials. This analysis gives rise to n estimated labels (representing
which choice the classifier predicted on each trial) and n true labels
(indicating which option was truly chosen). Comparing predicted to
true labels yields a sequence of classification outcomes (indicating for
each trial whether the prediction was correct or incorrect). Repeating
this analysis for each member of a group ofm subjects yields the typical
two-level structure (m subjects times n trials each) that is illustrated in
Fig. 1; for a concrete example see Figs. 7a,e. A two-level structure under-
lies virtually all trial-by-trial decoding studies (see, amongmany others,
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Brodersen et al., 2012b; Chadwick et al., 2010; Harrison and Tong, 2009;
Johnson et al., 2009; Krajbich et al., 2009). The same two-level structure
often applies to subject-by-subject classification studies (e.g., decoding
a diagnostic state or predicting a clinical outcome), especially when
subjects are partitioned into groups that are analyzed separately.

A hierarchical (or multilevel) design of this sort gives rise to the
questions of what we can infer about the accuracy of the classifier
in individual subjects, and what about the accuracy in the population
from which the subjects were sampled. Any approach to answering
these questions must provide a means of (i) estimation (e.g., of the
accuracy itself as well as an appropriate interval that describes our
uncertainty about the accuracy); and (ii) testing (e.g., whether the
accuracy is significantly above chance). This paper is concerned with
such subject-level and group-level inferences on classification accuracy
for multilevel data.

The statistical evaluation of classification performance in non-
hierarchical (e.g., single-subject) applications of classification has
been discussed extensively in the literature (Brodersen et al., 2010a;
Langford, 2005; Lemm et al., 2011; Pereira and Botvinick, 2011; Pereira
et al., 2009). By contrast, relatively little attention has thus far been de-
voted to evaluating classification algorithms in hierarchical (i.e., group)
settings (Goldstein, 2010; Olivetti et al., 2012). This is unfortunate since
the field would benefit from a broadly accepted standard.

Such a standard approach to evaluating classification performance in
a hierarchical setting should account for two independent sources of
variability: fixed-effects (i.e., within-subjects) variance that results from
uncertainty about the true classification accuracy in any given subject;
and random-effects variance (i.e., between-subjects variability) that
reflects the distribution of true accuracies in the population from
which subjects were sampled. This distinction is crucial because clas-
sification outcomes obtained in different subjects cannot be treated
as samples from the same distribution; in a hierarchical setting,
each subject itself has been sampled from a population with an
unknown intrinsic heterogeneity (Beckmann et al., 2003; Friston et
al., 2005). Models that explicitly separate both sources of uncertainty
are known asmixed-effectsmodels. They are the objects of interest in
this paper.

Contemporary approaches to performance evaluation in classifica-
tion group studies fall into several groups.1 One approach rests on the
pooled sample accuracy, i.e., the number of correctly predicted trials,
summed across all subjects, divided by the overall number of trials. The
statistical significance of the pooled sample accuracy can be assessed
using a simple classical binomial test (assuming the standard case of
binary classification) that is based on the likelihood of obtaining the ob-
served number of correct trials (or more) by chance (Langford, 2005). A
less frequent variant of this analysis uses the average sample accuracy
instead of the pooled sample accuracy (Clithero et al., 2011).

A second approach, more commonly used, is to consider subject-
specific sample accuracies and estimate their distribution in the popu-
lation. This method typically (explicitly or implicitly) uses a classical
one-tailed t-test across subjects to assess whether the population
mean accuracy is greater than what would be expected by chance
(e.g., Harrison and Tong, 2009; Knops et al., 2009; Krajbich et al.,
2009; Schurger et al., 2010).

In the case of single-subject studies, the firstmethod (i.e., a binomial
test on the pooled sample accuracy) is an appropriate approach. How-
ever, there are three reasons why neither method is optimal for group
studies. Firstly, both of the above methods neglect the hierarchical
nature of the experiment. The firstmethod (based on the pooled sample
accuracy) represents a fixed-effects approach and disregards variability
across subjects. This leads to overly optimistic inferences and provides
results that are only representative for the specific sample of subjects
studied, not for the population theywere drawn from. The secondmeth-
od (t-test on sample accuracies) does consider randomeffects; but it nei-
ther explicitly models the uncertainty associated with subject-specific
accuracies, nor does it account for violations of homoscedasticity
(i.e., the differences in variance of the data between subjects).

1 This paper focuses on parametric models for performance evaluation. While non-
parametric methods are available (e.g., based on permutation tests), these methods
can be very time-consuming in hierarchical settings and are not considered in detail
here (see e.g. Hassabis et al., 2009; Just et al., 2010; Pereira and Botvinick, 2011; Pereira
et al., 2009; Stelzer et al., 2013).
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Fig. 1. Overview of the outcomes generated by a classification group study. In a trial-by-trial classification analysis, a classifier is trained and tested, separately for each subject, to
predict a binary label (+ or−) from trial-wise correlates of brain activity. This constitutes a hierarchical design. The first level concerns trial-wise classification outcomes (where 1
and 0 represent correctly and incorrectly classified trials) that are drawn from latent subject-specific classification accuracies. The second level concerns subject-specific accuracies
themselves, which are drawn from a population distribution. When evaluating the performance of a classification algorithm, we are interested in inference on subject-specific
accuracies and on the population accuracy itself.
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