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Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into im-
proving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a
popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence
using a combination of nonlinear registration and a “skeleton projection” that may break topological consistency
of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-
projection procedure in TBSS with a single, regularized, high-dimensional registration.
To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed
an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and
quantifies tract similarity across subjects in standard space. We optimized parameters for two registration al-
gorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation
framework, and of the optimized registration algorithms. Next, we compared registration performance of
the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved
registration in TBSS were evaluated in an example study.
The evaluation framework was highly reproducible for both algorithms (R2 0.993; 0.931). The optimal regis-
tration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal
parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such ap-
proaches in TBSS. This was further confirmed in the example experiment.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion imaging of the brain provides insight into architectural
properties, and developmental and degenerative processes of the white
matter (Basser et al., 1994; Beaulieu, 2002; Lebel et al., 2010). Quantita-
tive features derived from diffusion imaging, such as fractional anisotro-
py (FA) and mean diffusivity (MD), allow for comparison of diffusion
properties across different subjects (Basser and Jones, 2002). This can
be achieved in a number of ways, for example region of interest-based
or voxel-based.

Voxel-based analyses offer a fast and automated means of analyzing
diffusion data (Büchel et al., 2004; Buchsbaum et al., 1998; van Hecke
et al., 2010). They do however require the images to be in a common
space in which anatomical correspondence across subjects is assured.

Establishing correspondence by bringing images into a common space
is a non-trivial task, for which image registration techniques are com-
monly employed. However, image registration approaches in general
do not achieve perfect anatomical correspondence due to anatomical
variability. In an attempt to account for the residual misalignment,
increase sensitivity and to satisfy the assumptions of parametric
tests (if applied), voxel-based analyses often rely on smoothing.
The extent of this smoothing ideally needs to be matched to the
expected effect size, which can be spatially varying and not known
a-priori (Jones et al., 2005). In 2006, an alternative approach for an-
atomical alignment of diffusion data was proposed. Tract-based spa-
tial statistics (TBSS) (Smith et al., 2006, 2007) was introduced to
mitigate the influence of residualmisalignment in registration of diffusion
data, and to overcome the need to set smoothing extent in voxel-based
analyses. In TBSS, following an initial nonlinear registration step
(of “medium” dimensionality), voxels that are local maxima for FA
are mapped onto a skeleton composed of sheets of maximum FA
voxels, and statistical analysis is performed on skeleton voxels.
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Constraining the analysis to the white matter skeleton results in a
dimensionality reduction, ameliorating the issue of multiple testing.
Over the past years, TBSS has beenwidely adopted, aided by its availabil-
ity within FSL (Smith et al., 2004; Woolrich et al., 2009) and ease of use.
The projection stage in TBSS however, is a spatially local operation, with
the voxels containing locally maximal FA projected onto the skeleton in-
dependently; therefore it does not enforce spatial consistency of the
warped images. This may result in an undesirable loss of anatomical to-
pology of tracts in the projection stage. The main aim of this work is to
investigate if it is feasible to replace the two registration + projection
stages by a single regularized high-dimensional registration approach in-
side the TBSS method (while still aiming to carry out cross-subject
voxelwise testing on the skeleton, to help minimize correspondence
errors).

Since even small errors in correspondence may substantially influ-
ence results (Smith et al., 2006), considerable effort has been put in
improving the registration of diffusion data (Jones et al., 2002; Park
et al., 2003; van Hecke et al., 2007; Yap et al., 2009; Yeo et al., 2009;
Zhang et al., 2006). In registration, a spatial transformation is deter-
mined by optimizing a similarity metric. For evaluating registration
performance across algorithms, such as performed for diffusion imag-
ing byWang et al. (2011), or to optimize different registration param-
eters, a similarity metric must be employed as well. This is necessary
since we do not know the ground truth anatomical correspondence of
two images. To objectively measure registration performance however,
we cannot use the same similaritymetric thatwas optimized in the reg-
istration process, since this would bias the evaluation.

Similarity metrics in diffusion image registration can be based on
scalar images such as FA or structural images. Metrics can, alternatively,
be based on higher dimensional image features, e.g., on the full diffusion
tensor or a number of its components. A third category of similaritymet-
rics is defined on the results of white matter tractography. These three
classes of similarity metrics have all been used in the objective functions
of image registration approaches for diffusion images (Guimond et al.,
2002; Park et al., 2003; Xu et al., 2003; Yeo et al., 2009; Zhang et al.,
2006; Zvitia et al., 2010). Analogously, similarity metrics in all three cat-
egories have been employed in order to evaluate registration perfor-
mance (Park et al., 2003; Wang et al., 2011; Yap et al., 2009; Yeo et al.,
2009; Zhang et al., 2007; Zöllei et al., 2010).

An important advantage of a performance measure based on simi-
larity of tractography results is that it is independent of any particular
similarity metric, defined on a scalar or higher order image, which is
employed in most registration approaches. Also, optimal white matter
tract alignment is most closely linked to the eventual registration aim
of obtaining anatomical correspondence in white matter (Lawes et al.,
2008). We therefore developed a framework to evaluate scalar or
higher-order similarity metric based registrations using tractography.
Previous work using white matter tractography for this purpose was
based either on whole brain tractography (Park et al., 2003) or only
on a small selection of tracts (Jia et al., 2011; Xue et al., 2010; Yap
et al., 2009; Zhang et al., 2006; Zöllei et al., 2010). Furthermore, all
previous work depended on deterministic tractography, which has
more difficulty in coping with complex fiber architecture (e.g., crossing
fibers) and signal noise than probabilistic tractography (Behrens et al.,
2007).

In this work, we extended the use of tractography for image registra-
tion evaluation to a broader range of white matter tracts, and we used a
probabilisticmodel for tractography. Parameters for twononlinear regis-
tration algorithms were optimized using similarity of different subjects'
warped tracts as the registration performance measure. The optimiza-
tion was performed on two datasets acquired at different institutions
with different spatial resolution. Registration performance for these opti-
mized approacheswas then compared to the registration performance of
the TBSS method on a white matter skeleton. We show that the opti-
mized registration reproducibly improved the alignment ofwhitematter
structures compared to TBSS.

Methods

The evaluation framework consists of an automated approach to
perform probabilistic tractography and a tract-based evaluation met-
ric. A schematic overview of the process is provided in Fig. 1.

Tractography

Tractography was performed with PROBTRACKX (Behrens et al.,
2003, 2007), a Bayesian approach to probabilistic tractography avail-
able in FSL.

Tractography was initialized by defining standard space “seed”,
“target”, “stop” and “exclusion” ROIs (masks). These masks were based
on the protocols described by Mori et al. (2002), Stieltjes et al. (2001),
and Wakana et al. (2004, 2007), but had to be adapted to cope with
the more dispersing nature of probabilistic tractography. Most impor-
tantly, exclusion masks were added, e.g., the mid-sagittal slice was
added in all but the commissural tracts. All masks were transferred to
subject native space using nonlinear registrations obtained with FNIRT
(Andersson et al., 2008) with default settings for FA images as available
in FSL.

Tracts that could robustly be identified and which would lead to a
reasonably uniform sampling across brain regions were selected. These
tracts are listed in Table 1. Two tracts, the posterior thalamic radiation
and the inferior fronto-occipital fasciculus, were excluded from the
final set because of considerable overlap with other tracts. Exclusion
of these tracts prevented uneven weighting of different regions in the
registration evaluation. The final set therefore consisted of 23 tracts.

Tractography was performed in subject native space while record-
ing tract density at a 1 mm3 resolution and using between 2000 and
30,000 samples per seed ROI voxel to account for differences in the
number of seed voxels and tract geometry. These parameter settings
were selected to aim for robust extraction of the tracts, and were
based on the observed number of fiber-particles that were included
in the tract together with visual inspection of tractography outputs.
Commissural tracts and the middle cerebellar peduncle were tracked
a second time (adding both runs) with inverted seed-target ROIs to
ensure symmetry of the resulting tract. The acoustic radiations and
the superior longitudinal fasciculus were also tracked in both direc-
tions to increase robustness. After tracking, the tract density image
was normalized by dividing with the total number of particles.

An example of an individual subject's tracking result, thresholded for
the purpose of visualization, for all tracts is shown in Fig. 2. Tractography
was performed for each subject and for each structure. The resulting
maps of white matter structures reside in subject native space, and
were used for all evaluations.

Tract-based evaluation metric

The registration performance measurement was based on cross-
subject similarity of the warped tract maps. Non-thresholded tract den-
sity images in subject native space were warped to common space, and
then tract similarity was assessed.

To avoid differences in image characteristics between individual
and group mean tract maps influencing the results, tract similarity was
evaluated on a subject-to-subject basis. Tract similarity was assessed
for each structure individually, and then averaged for all structures in
each pair of subjects. In order to provide an even weighting over tracts
in this averaging, similarity of left–right homologue structureswas joint-
ly given an equalweight as that of the commissural tracts and themiddle
cerebellar peduncle. If a particular tract could not be identified in one of
the subjects with the automated tractography approach (i.e. no particles
fulfilled the criteria imposed by the protocol masks), the tract was omit-
ted in the aggregation of the subject–subject similarity score.
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