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The Parahippocampal Place Area (PPA) has traditionally been considered a homogeneous region of interest, but
recent evidence from both human studies and animal models has suggested that PPA may be composed of func-
tionally distinct subunits. To investigate this hypothesis, we utilize a functional connectivity measure for fMRI
that can estimate connectivity differences at the voxel level. Applying this method to whole-brain data from
two experiments, we provide the first direct evidence that anterior and posterior PPA exhibit distinct connectivity
patterns, with anterior PPA more strongly connected to regions in the default mode network (including the
parieto-medial temporal pathway) and posterior PPA more strongly connected to occipital visual regions. We
show that object sensitivity in PPA also has an anterior–posterior gradient, with stronger responses to abstract
objects in posterior PPA. These findings cast doubt on the traditional view of PPA as a single coherent region,
and suggest that PPA is composed of one subregion specialized for the processing of low-level visual features
and object shape, and a separate subregion more involved in memory and scene context.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Over the past two decades, functional magnetic resonance imaging
(fMRI) has identified a number of category-selective regions involved
in visual processing. Most of these regions have been defined based on
differential activation to one category of stimuli over another, but this
hypothesis-driven approach to mapping brain regions has significant
drawbacks. Adjacent areas that have similar response profiles to the
presented stimuli, but different functions, may be mistakenly conflated;
for example, functionally distinct subregions have been identified in both
object-sensitive lateral occipital complex (LOC) (Grill-Spector et al.,
1999) and the extrastriate body area (Weiner and Grill-Spector, 2011).

Another visual region that has been proposed as a candidate for
subdivision is the Parahippocampal Place Area (PPA) (Epstein and
Kanwisher, 1998). This scene-sensitive area has been heavily implicated
in visual scene perception, though the precise nature of the representa-
tion in this area has been controversial. Leading models have argued
that PPA represents local scene geometry (Epstein et al., 2003), spatial
expanse (Kravitz et al., 2011a; Park et al., 2011), space-defining objects
(Mullally and Maguire, 2011), or contextual relationships (Bar, 2004).
All of these models have implicitly assumed that PPA is a homogeneous
unit performing a single functional role, but this view has recently been
called into question. In the last several years, a number of researchers
have suggested that PPA could have multiple functional components.
Differences in spatial frequency response (Rajimehr et al., 2011),

varying deficits resulting from PPA lesions (Epstein, 2008), PPA's over-
lapwithmultiple visual fieldmaps (Arcaro et al., 2009), and a clustering
meta-analysis (Sewards, 2011) all hint at the possibility that PPA may
be comprised of at least two functionally distinct subunits along its
posterior–anterior axis. However, studies explicitly searching for a dis-
tinction between posterior and anterior PPA have failed to identify
major differences (Cant and Xu, 2012; Epstein and Morgan, 2012).

Anatomical data from a proposed macaque homologue of PPA
presents an interesting possibility for identifying subregions of human
PPA. Although the definition of macaque PPA is still a matter of ongoing
research (Nasr et al., 2011; Rajimehr et al., 2011; Sewards, 2011), a pos-
sible candidate spans cytoarchitectonically defined parahippocampal
areas TH, TF, and TFO (Kravitz et al., 2011b). The most anterior area,
TH, is primarily connected to retrosplenial cortex (RSC) (Kravitz et al.,
2011b; Suzuki, 2009) and is also connected to the caudal inferior parietal
lobule (cIPL) through a parieto-medial temporal pathway (Cavada and
Goldman-Rakic, 1989; Kravitz et al., 2011b). The more posterior TF is
connected to a similar set of regions, but receives stronger input from
ventral visual areas V4 and TEO (Suzuki, 2009). The specific connectivity
properties of themost posterior area (TFO) are not yet known, but it has
been shown that TFO has a neuronal architecture highly similar to that of
ventral visual regions (Saleem et al., 2007). In short, these macaque
parahippocampal regions exhibit an anterior–posterior gradient, with
the anterior side most related to RSC and cIPL and the posterior side
most related to ventral visual areas.

Connectivity results in humans, using both diffusion tensor imaging
(DTI) and fMRI, have shown that the parahippocampal region is
connected to occipital visual cortex (Kim and Kim, 2005; Libby et al.,
2012; Rushworth et al., 2006) as well as RSC and posterior parietal

NeuroImage 75 (2013) 228–237

⁎ Corresponding author at: Department of Computer Science, Stanford University, 353
Serra Mall, Stanford, CA 94305, USA. Fax: +1 650 725 7411.

E-mail address: chrisb33@cs.stanford.edu (C. Baldassano).

1053-8119/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2013.02.073

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2013.02.073
mailto:chrisb33@cs.stanford.edu
http://dx.doi.org/10.1016/j.neuroimage.2013.02.073
http://www.sciencedirect.com/science/journal/10538119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2013.02.073&domain=pdf


cortex (Caspers et al., 2011; Kahn et al., 2008; Libby et al., 2012;
Rushworth et al., 2006; Uddin et al., 2010), and PPA is known to com-
bine both spatial and object identity information (Harel et al., 2012).
However, it is not known whether the posterior and anterior parts of
the PPA connect differentially to these two networks. If human PPA cor-
responds to some or all of the macaque areas TH/TF/TFO, it should be
possible to identify an anterior–posterior gradient in the functional con-
nectivity properties of PPA. Such a finding would not only reinforce the
proposed link between PPA and these macaque parahippocampal
regions, but also demonstrate that PPA is actually composed of at least
two regions operating on different types of visual information, shedding
new light on the controversy over its functional properties.

To test whether voxels within PPA have differing connectivity prop-
erties, we apply our recentmethod for learning voxel-level connectivity
maps (Baldassano et al., 2012). Unlike standard functional connectivity
measures that examine each voxel independently, our method con-
siders all PPA voxels simultaneously to identify subtle differences in
connectivity between voxels. After examining how several predefined
ROIs connect to PPA, we perform a whole-brain searchlight analysis to
identify the distinct cortical networks that connect preferentially to
anterior or posterior PPA. We then demonstrate that these connectivity
gradients are paired with gradients in functional selectivity, by evaluat-
ing the response to scenes and objects across PPA. Finally, we show that
the connectivity gradients within PPA extend beyond PPA's borders,
placing PPA in the context of ventral occipital and parahippocampal
regions.

Materials and methods

Regularized connectivity method

Investigating our hypothesis requires a method that characterizes
functional connectivity patterns within a region of interest (ROI), at
the voxel level. A number of studies have used fMRI functional connec-
tivity measures to investigate structure within ROIs (Chai et al., 2009;
Cohen et al., 2008; Kim et al., 2010; Margulies et al., 2007, 2009; Roy
et al., 2009; Zhang et al., 2008), but most previous approaches either
do not measure connectivity at the voxel level (requiring spatial
downsampling to a small number of subregions) and/or learn connec-
tivity weights separately for each voxel (decreasing sensitivity and
making comparisons between voxels more difficult). In our datasets,
the PPA connectivity effects are too subtle to be detected by learning
weights separately for each voxel (see Supplementary Fig. 1), and re-
quire the use of a method which can learn voxel-level connectivity
maps that consider all voxels simultaneously. Support vector regression
can learn these type of voxel-level connectivity maps (Heinzle et al.,
2011), but does not utilize information about the spatial arrangement
of the voxels and therefore requires a relatively large amount of data.
To address this issue, we developed amethod for examining connectiv-
ity differences within ROIs that is specifically tailored to small training
sets typical in the fMRI setting. This method has been shown to recover
voxel-level connectivity propertiesmore accurately and efficiently than
previous approaches (Baldassano et al., 2012).

The most common type of analysis for computing functional
connectivity between two regions A1 and A2 measures how well the
mean of all voxel timecourses in A1 predicts the mean timecourse in
A2. We generalize this approach to identify voxel-level connectivity dif-
ferences, by learning aweightedmean over the voxel timecourses in A1

that best predicts themean timecourse in A2. The learnedweights of the
voxels in A1 will then indicate the strength of the functional connection
between each voxel and region A2. Simply allowing each voxel weight
to be learned independently leads to severe overfitting on typical
fMRI datasets, but fMRI data naturally satisfies some regularity assump-
tions that can constrain our model. In particular, voxel connectivity
properties are likely to be spatially correlated, with nearby voxels typi-
cally having more similar connectivity properties than spatially distant

voxels. This reflects a common view of cortical organization, and is
especially applicable to blood-oxygen-level dependent (BOLD) signals
such as fMRI, since the hemodynamic response is spatially smooth. To
incorporate this assumption, we add a spatial regularization term to
our model, which encourages each voxel in A1 to have a connectivity
weight similar to its spatially adjacent neighbors.

The learned connectivity maps are therefore a compromise
between two objectives. Our first goal is tomatch theweighted average
of the A1 timecourses to the mean A2 timecourse, by adjusting the
weights. Our second goal is to make the weights spatially smooth, to
prevent overfitting and allow our weights to generalize to independent
data runs. The relative importance of this second goal is controlled by a
hyperparameter λ, allowing us to trade off between having all weights
be learned independently (λ = 0) and having all weights be identical
(λ = ∞).

Mathematically, the connectivity weights are learned by minimiz-
ing the convex optimization objective

Minimize
a;b

‖ aT ⋅A1 þ bÞ−meanυ A2Þ‖22 þ λ‖D⋅a‖22
��

where a is the connectivityweightmap, b is a constant offset, A1 and A2

are the (# voxels × # timepoints) data matrices from two ROIs, and
meanυ denotes an average across voxels.D is the voxel connectivityma-
trix, whichwe design to penalize themean squared difference between
the weight ai of voxel i, and the weights of voxel i's neighbors:

jjD⋅aj 2
2 ¼ ∑N

i¼1
1
nij j ∑j∈ni

ai−aj
� �2��� where N is the number of voxels in

A1 and ni is the set of i's neighbors. The optimal a (for a given choice
of λ) can be found efficiently by using a convex optimization package
such as CVX (Grant and Boyd, 2011). For further details and validation
experiments, see Baldassano et al. (2012).

The following sections describe the collection of the datasets used to
learn the connectivity weights a. As will be shown in the Results, PPA's
functional connectivity properties are not sensitive to the choice of
experimental dataset; the specific details of the stimuli and tasks in
these experiments are provided only for reference purposes.

Localizer and object-in-scene experiments

Participants
10 subjects (3 female) with normal or corrected-to-normal vision

participated in the object-in-scene and localizer fMRI experiment. The
study protocol was approved by the Stanford University Institutional
Review Board, and all subjects gave their written informed consent.

Scanning parameters
Imaging data were acquired with a 3 T G.E. Healthcare scanner. A

gradient echo, echo-planar sequence was used to obtain functional
images [volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip
angle, 80°; matrix, 128 × 128 voxels; FOV, 20 cm; 29 oblique 3 mm
slices with 1 mm gap; in-plane resolution, 1.56 × 1.56 mm]. The func-
tional data was motion-corrected and each voxel's mean value was
scaled to equal 100 (no spatial smoothing was applied). We collected
a high-resolution (1 × 1 × 1 mm voxels) structural scan (SPGR; TR,
5.9 ms; TE, 2.0 ms, flip angle, 11°) in each scanning session. The struc-
tural scan was used to calculate a transformation between each
subject's brain and the Talairach atlas.

Localizer stimuli and procedure
For the localizer experiment, subjects performed 2 runs, eachwith 12

blocks drawn equally from six categories: child faces, adult faces, indoor
scenes, outdoor scenes, objects (abstract sculptures with no semantic
meaning), and scrambled objects (these stimuli have been used in previ-
ous studies such as Golarai et al., 2007). Images (240 × 240 pixels;
subtending 12.8 × 12.8° of visual angle) were presented at fixation.
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