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Multivariate pattern analysis (MVPA) is a relatively recent innovation in functional magnetic resonance imaging
(fMRI) methods. MVPA is increasinglywidely used, as it is apparentlymore effective than classical general linear
model analysis (GLMA) for detecting response patterns or representations that are distributed at a fine spatial
scale. However, we demonstrate that widely used approaches to MVPA can systematically admit certain
confounds that are appropriately eliminated by GLMA. Thus confounds rather than distributed representations
may explain some cases inwhichMVPA produced positive results but GLMAdid not. The issue is that it is common
practice in MVPA to conduct group tests on single-subject summary statistics that discard the sign or direction of
underlying effects, whereas GLMA group tests are conducted directly on single-subject effects themselves. We
describe how this commonMVPApractice undermines standard experiment design logic that is intended to control
at the group level for certain types of confounds, such as time on task and individual differences. Furthermore, we
note that a simple application of linear regression can restore experimental control when using MVPA in many
situations. Finally, we present a case studywith novel fMRI data in the domain of rule representations, or flexible
stimulus–response mappings, which has seen several recent MVPA publications. In our new dataset, as with re-
cent reports, standard MVPA appears to reveal rule representations in prefrontal cortex regions, whereas GLMA
produces null results. However, controlling for a variable that is confounded with rule at the individual-subject
level but not the group level (reaction time differences across rules) eliminates the MVPA results. This raises the
question ofwhether recently reported results truly reflect rule representations, or rather the effects of confounds
such as reaction time, difficulty, or other variables of no interest.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Analysis of functional magnetic resonance imaging (fMRI) data
can be characterized in terms of two broad approaches: general linear
model analysis (GLMA) and multivariate pattern analysis (MVPA).
GLMA assesses, on a voxel-by-voxel basis, themean difference in activity
between, or effect of, experiment conditions (e.g., Friston et al., 1995).
This leads to a voxel-by-voxel map of effects (i.e., GLMA summary
statistics). At the group level, a test can be conducted at each voxel
to determine whether the effect is consistent across subjects. In the
MVPA methods that we consider here, developed to detect a type of
“distributed representations” as discussed further below, a classifier is
trained to discriminate between multivoxel patterns of activity from
different experiment conditions. Here, the summary statistic is discrim-
ination success, which is akin to significance of the effect, rather than the
effect itself. A classifier can be trained once, on thewhole brain or a par-
ticular region of interest, or many times, in small “searchlight regions
centered on each voxel (e.g., Kriegeskorte et al., 2006). We focus on
the latter, searchlight analysis because this approach is most compa-
rable to GLMA, although the point of this article holds equally for
whole-brain MVPA (see Discussion). Searchlight MVPA leads to a

voxel-by-voxel map of local (searchlight) discrimination success
(i.e., MVPA summary statistics). At the group level, a test can be
conducted at each voxel to determine whether discrimination suc-
cess in the surrounding searchlight is consistent across subjects.1

MVPA is increasing in popularity, because its use of information
combined across multiple voxels makes it more sensitive than
GLMA to certain types of “distributed representation.” Accordingly,
MVPA has successfully characterized the neural substrates of many
representations that have eluded GLMA, ranging from low-level
perceptual features to abstract memories or task rules (e.g., Bode and
Haynes, 2009; Carlin et al., 2011; Cole et al., 2011; Haynes and Rees,
2005; Haynes et al., 2007; Kamitani and Tong, 2005; Peelen et al.,
2010; Polyn et al., 2005; Reverberi et al., 2011; Vickery et al., 2011;
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1 More precisely, there are two commonly used types of summary statistics in
discrimination-based MVPA. The first is “classification accuracy,” a function of the
number of trials for which experiment condition can be correctly identified from patterns
of voxel activity (e.g., Haynes et al., 2007). The second is “within-minus-across pattern
similarity,” or the difference between within-condition and across-condition pattern cor-
relations (e.g., Haxby et al., 2001; Peelen et al., 2009). Both types are zero-centered under
the null hypothesis of no discriminability, and both behave similarly with regard to
the issue raised here. Note that either type of summary statistic can be used to char-
acterize discrimination success of classifiers trained on searchlights or the whole
brain, and thus both searchlight and whole-brain discrimination-based MVPA are
subject to the concern discussed here.
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Woolgar et al., 2011). As described above, the robustness of MVPA re-
sults is often established by conducting group (i.e., across-subject)
tests on discrimination success. However it is not generally recognized,
and is the point of this article, that group tests on discrimination success
can preserve confounds that are controlled when group tests are
conducted on effects themselves, as in GLMA. This is because, as noted
above, discrimination success is akin to effect significance rather than
to effects themselves. Since effect significance discards the sign or
direction of the underlying effect, this information is not exposed to
across-subject averaging in the group test. This discarding of direction
information seems innocuous, but in fact undermines a key element
of standard group test logic, which assumes that such across-subject
averaging of direction occurs. As a consequence, the interpretability of
such group test results may be compromised by common confounds
over which control has been inadvertently loosened.

For example, across-subject counterbalancing works by ensuring
that effects due to the counterbalanced variable (e.g., presentation
order) are confounded with experiment condition in different direc-
tions across subjects. When experiment effects themselves are used
as summary statistics, as in GLMA, effect direction is duly averaged
across subjects in the group test. Because counterbalanced effects
take opposite directions across subjects, the averaging process in
the group test cancels these out. However, when summary statistics
are akin to effect significance, as with MVPA, then effect direction is
not averaged across subjects in the group test and counterbalanced
confound effects do not cancel out, producing potentially spurious
results. Note that the issue we describe here is not specific to confounds
that are explicitly counterbalanced. In general, confounds that go in
different and approximately balanced directions across subjects
(e.g., random individual differences in experiment condition prefer-
ence, familiarity, or difficulty) will be approximately controlled in
group tests based on effects (as in GLMA), but will survive in group
tests based on effect significance (as in discrimination-based MVPA).
The difference between types of confounds with regard to this issue is
further discussed below.

It is important to specify our particular definitions of both MVPA
and “distributed representations” in order to clarify the scope of the
problem that we describe. By MVPA, we refer in this article specifically
to that family of methods that was developed following Haxby et al.
(2001). This family of methods is unified by a particular definition of
“distributed representation.” Specifically, in this definition, distributed
representations are those in which voxelwise effects are uncorrelated,
even taking opposite directions, across neighboring voxels within a
brain region (e.g., Boynton, 2005; Haxby et al., 2001; Haynes and
Rees, 2005; Kamitani and Tong, 2005; Norman et al., 2006). That is,
this definition refers specifically to the presence of fine-grained spatial
structure within each brain region in which activity is observed.
“MVPA” has then been used in this literature to refer to the family of
methods that have been used to detect such distributed representations.
Due to the complex, fine-grained structure of across-voxel patterns in
these types of distributed representations, aggregating directional
voxelwise statistics (e.g., effects) at the group level based on spatial
alignment is unlikely to be fruitful. This is due to the fact that across-
subject alignment is unlikely to be sufficient to align patterns with
such fine spatial scale. Thus, researchers have turned to aggregating
directionless statistics (e.g., classifier output) at the group level when
using MVPAmethods within this literature. However, this practice of
aggregating directionless statistics leads to the problem that we de-
scribe in this article. We emphasize that the use of pattern classifiers
is not the defining characteristic of MVPA as discussed in this article:
there are other applications of pattern classification techniques in
which directional voxelwise statistics can be appropriately aggregat-
ed at the group level (e.g., Mourão-Miranda et al., 2006). Such appli-
cations are unlikely to be able to detect the type of fine-scaled
“distributed representations” addressed by Haxby et al. (2001), and
are thus outside the definition of MVPA used in this article. Such

methods also avoid the particular methodological problem that we
describe.

Representational similarity analysis (RSA: Kriegeskorte et al.,
2008) is a newer form of MVPA that is growing in popularity. The re-
lationship between RSA and discrimination-based MVPA is analogous
to that between parametric GLMA and categorical GLMA. Although
RSA uses different summary statistics than discrimination-based
MVPA, its summary statistics share the critical property of discarding
the sign of underlying effects, so that RSA can still be susceptible to
the confound issue described here (described further below).

Indeed, the issue that we have introduced here is theoretically
general in that it affects any analysis that applies standard group test
logic to individual summary statistics that discard the sign of underlying
effects. Although it is beyond the scope of this article to thoroughly
survey all suchmethods, our point is to recognize that this class includes
many applications of MVPA as defined above. We further consider the
generality of the issue in the Discussion. To illustrate the problem con-
cretely, we present several simulated examples in the next section.

Simulations

Simulation 1: individual differences andmanipulated variables of no interest

In the first simulation (Fig. 1), effects due to random individual
differences are controlled in GLMA but not MVPA.2 An experimenter
seeks to determine whether a neural signal (e.g., voxel activity) differs
across two experiment conditions (e.g., use of rule A vs. B to perform
a task). Unknown to the experimenter, voxel activity is unresponsive
to rule, but is responsive to difficulty. Furthermore, it happens inciden-
tally that rule A is more difficult than rule B for some subjects, whereas
the reverse is true for other subjects. Thus, at the individual-subject
level, rule and difficulty are confounded and experiment effects
(i.e., mean A activity minus mean B activity) appear robust due to
the confound. However, the task that is more difficult varies randomly
across subjects, and therefore difficulty effects are approximately
counterbalanced across subjects, and will cancel out when experiment
effects are averaged in a group test, as in GLMA. Accordingly, GLMA
group tests are not affected by the task difficulty confound (and should
produce a null result in this example, since we assumed that there was
no actual effect of the rule). In contrast, group tests that average dis-
crimination success, as in discrimination-based MVPA, fail to mitigate
this same confound. The problem is that discrimination success reflects
only the robustness of the individual experiment effect, and is therefore
positive whenever individual-subject level experiment effects are
significant, irrespective of effect direction. Thus, confounding diffi-
culty effects will not cancel out when A vs. B discrimination success
is averaged at the group level. This leaves open the opportunity to
misinterpret MVPA results as evidence for neural differences due to
rule, rather than to task difficulty (which, in this example, is the actual
cause of the observed neural effect). Thus GLMAmitigated the difficulty
confound, whereas MVPA did not.

It is important to note that, if most subjects in a sample experience
the same rule condition as more difficult than the other (e.g., if most
subjects experience rule A as more difficult than rule B), then this
confound will be reflected in GLMA as well as MVPA group tests.
This is widely recognized, and is a motivation for the standard practice
of conducting group tests on behavioral measures as a complement to
analyses of the imaging data (e.g., a group t-test on the effect of rule
on RT). If such a test is significant then the experimenter considers

2 Simulation 1 details: For the i-th subject on the n-th trial, difficulty is:
di,n = ci(An − Bn) + ξi,n, where An and Bn are binary indicators for experiment condi-
tion, ξi,n is a noise term, and the confound weight, ci, is positive for subject 1 but negative
for subject 2. Then, activity of the j-th voxel is simply positively weighted difficulty plus
noise: vi,j,n = bi,jdi,n + i,j,n. Twenty voxels were simulated for each subject, but just one
voxel is illustrated for each subject in Fig. 1. The Gaussian Naïve Bayes (GNB) classifier
was used for classification.
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