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Many large-scale longitudinal imaging studies have been or are being widely conducted to better understand
the progress of neuropsychiatric and neurodegenerative disorders and normal brain development. The goal
of this article is to develop a multiscale adaptive generalized estimation equation (MAGEE) method for spa-
tial and adaptive analysis of neuroimaging data from longitudinal studies. MAGEE is applicable to making sta-
tistical inference on regression coefficients in both balanced and unbalanced longitudinal designs and even in
twin and familial studies, whereas standard software platforms have several major limitations in handling
these complex studies. Specifically, conventional voxel-based analyses in these software platforms involve
Gaussian smoothing imaging data and then independently fitting a statistical model at each voxel. However,
the conventional smoothing methods suffer from the lack of spatial adaptivity to the shape and spatial extent
of region of interest and the arbitrary choice of smoothing extent, while independently fitting statistical
models across voxels does not account for the spatial properties of imaging observations and noise distribu-
tion. To address such drawbacks, we adapt a powerful propagation–separation (PS) procedure to sequentially
incorporate the neighboring information of each voxel and develop a new novel strategy to solely update a
set of parameters of interest, while fixing other nuisance parameters at their initial estimators. Simulation
studies and real data analysis show that MAGEE significantly outperforms voxel-based analysis.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Many large-scale longitudinal neuroimaging studies including the
Alzeimer's disease neuroimaging initiative and the NIH magnetic res-
onance imaging study of normal brain have been or are being widely
conducted to better understand the progress of neuropsychiatric and
neurodegenerative diseases or normal brain development (Almli et
al., 2007; Evans and Group., B. D. C., 2006; Kim et al., 2010; Meltzer
et al., 2009; Petersen et al., 2010; Skup et al., 2011). The primary
goal of longitudinal neuroimaging studies is to characterize individual
change in neuroimaging measurements (e.g., volumetric and
morphometric measurements) over time, and the effect of some
covariates (or predictors) of interest, such as diagnostic status and
gender, on the individual change (Evans and Group., B. D. C., 2006;

Petersen et al., 2010). A distinctive feature of longitudinal neuroimag-
ing data is that neuroimaging data have a temporal order. Imaging
measurements of the same individual usually exhibit positive correla-
tion and the strength of the correlation decreases with the time sep-
aration. Ignoring temporal correlation structure in imaging measures
would likely influence subsequent statistical inference, such as
increase in false positive and negative errors, which may lead to
misleading scientific inference (Diggle et al., 2002; Fitzmaurice et
al., 2004). However, the analysis of longitudinal imaging data has
been hindered by the lack of advanced tools, which effectively inte-
grate advanced image processing and statistical tools for analyzing
complex and correlated imaging data along with behavioral and clin-
ical data.

Standard software platforms have severalmajor limitations. Standard
neuroimaging software platforms including statistical parametric map-
ping (SPM) (www.fil.ion.ucl.ac.uk/spm/) and FMRIB Software Library
(FSL) (www.fmrib.ox.ac.uk/fsl/), among many others, cannot accurately
model longitudinal data when there are more than two visits (repeated
measurements) (Nichols and Waldorp, 2010). Specifically, FSL can only
accommodate a univariate measure at the second level (e.g., comparing
visit 2–visit 1) and SPM, even though itmodels the correlation among re-
peated measures, unrealistically assumes that the correlation is equal
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over the whole brain. In contrast, proper longitudinal modeling is avail-
able in standard statistical software platforms including procMIXED and
proc GEE in SAS and lme4 and nlme in R. Recently, analysis of functional
neuroImages (AFNI) (afni.nimh.nih.gov/afni/) adopts the linear mixed
effects modeling packages nlme (Pinheiro et al., 2011) and lme4 (Bates
et al., 2011) in R for longitudinal functional magnetic resonance imaging
data. Moreover, the Freesurfer implements the linear mixed effects
modeling in the Freesurfer's LME Matlab toolbox (http://surfer.nmr.
mgh.harvard.edu/fswiki/LinearMixedEffectsModels) (Bernal-Rusiel et
al., 2013). The conventional analyses of longitudinal neuroimaging
data, referred to as voxel-based analysis, may be carried out in two
major steps: Gaussian smoothing the imaging data and subsequently
fitting a statistical model at each voxel by using either SAS or R. As
discussed below, the voxel-based analysis is generally not optimal in
power and the use of Gaussian smoothing may introduce substantial
bias in statistical results.

The voxel-based analysis has several major limitations. First, it is
common to apply a single Gaussian kernel with the full width half
maximum in the range of 8–16 mm to imaging data in order to ac-
count for registration errors, to Gaussianize the data, and to integrate
imaging signals from a region, rather than from a single voxel. As
pointed out in Ball et al. (2012), Jones et al. (2005), Zhang and
Davatzikos (2011), and Zhao et al. (in press), such Gaussian smooth-
ing method can suffer from several major drawbacks including the
arbitrary choice of smoothing extent and the lack of spatial adaptivity
to the shape and spatial extent of the region of interest. Thus, it is
suboptimal in power. In addition, as discussed in Li et al. (2012),
directly smoothing imaging data from twin and familial studies can
introduce substantial bias in estimating these factors and lead to a
dramatic increase of the numbers of false positives and false
negatives. Second, as pointed out in Li et al. (2011) and Worsley et
al. (2004), the voxel-based analysis essentially treats all voxels as
independent units in the estimation stage, and thus it does not explic-
itly account for the spatial properties (e.g., location and smoothness)
of imaging observations.

There are several attempts to address the limitations of voxel-based
analysis. In Zhang and Davatzikos (2011), an optimally-discriminative
voxel-based analysis was proposed to determine the spatially adaptive
smoothing of images, followed by applying voxel-wise group analysis.
The key drawback of the optimally-discriminative voxel-based analysis
is that it uses the imaging data twice for both optimal weight determi-
nation and group analysis, and thus the test statistics calculated for the
group analysis do not have a simple asymptotic null distribution, such
as the t distribution. Thus, the optimally-discriminative voxel-based
analysis has to resort to permutation test to calculate the p-values of
test statistics. However, the permutation methods are not only compu-
tationally intensive, but also require the so-called complete exchange-
ability. Such complete exchangeability is in fact a very strong
assumption, and thus the optimally-discriminative voxel-based analy-
sis is limited to both univariate imaging measure and two-group com-
parisons and cannot control for other continuous covariates of interest,
such as age. Moreover, the optimally-discriminative voxel-based anal-
ysis has not been extended to analyze longitudinal neuroimaging
data. In Polzehl et al. (2010) and Tabelow et al. (2006, 2008), the au-
thors generalized a powerful propagation–separation (PS) approach
(Polzehl and Spokoiny, 2000, 2006) to develop a multiscale adaptive
linear model to adaptively and spatially denoise functional magnetic
resonance images and diffusion tensor images from a single subject
and analyze neuroimaging data from cross-sectional studies. Recently,
in Li et al. (2011), Skup et al. (2012) and Zhu et al. (2009), a multiscale
adaptive regressionmodel and amultiscale adaptive generalizedmeth-
od of moments approach were developed to integrate the PS approach
(Polzehl and Spokoiny, 2000, 2006) with statistical modeling at each
voxel for spatial and adaptive analysis of neuroimaging data from mul-
tiple subjects. All these PS related methods, however, only allow simul-
taneously smoothing all parameters.

This article has two major aims. The first one is to review a class of
statistical methods called generalized estimating equation (GEE) for
general neuroimaging researchers. We illustrate that GEE is a power-
ful tool for making statistical inference on regression coefficients in
both balanced and unbalanced longitudinal designs and even twin
and familial studies. The second aim is to develop a multiscale
adaptive generalized estimating equation (MAGEE) for the spatial
and adaptive analysis of longitudinal neuroimaging data. Compared
with the existing literature including Li et al. (2011), Polzehl et al.
(2010), Skup et al. (2012) and Zhu et al. (2009), we make several
novel contributions. (i) MAGEE integrates the PS approach with
GEE, which is a semiparametric model, into a simultaneous smooth-
ing and estimation framework, allowing adaptively smoothing
images while accounting for the spatial pattern of activation regions.
(ii) We develop a new novel strategy of estimation and testing
hypothesis of interest in MAGEE. Specifically, the new strategy allows
solely smoothing the images of a set of parameters of interest, while
fixing other parameters at their initial estimates. For instance, the
scientific interest of many neuroimaging studies typically focuses on
the comparison of imaging measures across diagnostic groups,
while controlling for age, gender, and other covariates. MAGEE allows
solely smoothing the images for parameter estimates of the diagnos-
tic effect without smoothing the images of other parameter estimates,
such as age and gender. (iii) We use simulated data sets to show that
the new strategy can dramatically gain statistical power in some sce-
narios. (iv) Theoretically, in the appendix, the adaptive estimates and
test statistics of MAGEE are shown to have appropriate statistical
properties. We will validate companion software for MAGEE and
release it to the public.

Methods

Balanced versus unbalanced designs

In a typical longitudinal study, one collects a fixed number of re-
peated measurements on all study participants at a set of common
time points. When all individuals have the same number of repeated
measurements on a common set of occasions, the study is “balanced”
over time. Many of the early statistical methods, such as repeated-
measures analysis of variance, have been developed specifically for
balanced longitudinal designs. However, in most longitudinal studies
over a relatively long duration in the health sciences, some individuals
almost always miss their scheduled visit or date of observation. Conse-
quently, the sequence of observation times may vary across individ-
uals. In that case, we call the data “unbalanced” over time.

Missing data

Missing data, a ubiquitous problem in longitudinal studies, can be
caused by various reasons, such as skipped assessments, bad MRI
scans, or study dropout. Therefore, in practice, the longitudinal data
are necessarily unbalanced and they are often called “incomplete”
to emphasize the fact that an intended measurement for an individual
could not be obtained. Complete case analysis, a common and simple
method for handling incomplete data, focuses on all individuals with
complete measurements from the analysis. This approach, however,
can be highly inefficient when a large proportion of the subjects are
excluded. Moreover, when the individuals with complete data are
not a random sample from the target population, this approach can
also seriously bias estimates of longitudinal change. Fortunately,
most statistical methods for longitudinal analysis, such as GEE
discussed below, accommodate incomplete data under less stringent
assumptions, such as missing at random (Diggle et al., 2002;
Fitzmaurice et al., 2004). A good longitudinal analysis should include
serious assessment of these assumptions for the data at hand and
consideration of the effects of their violation on the results of the
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