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Wavelet-based methods have been developed for statistical analysis of functional MRI and PET data, where the
wavelet transformation is employed as a tool for efficient signal representation. A number of studies using these
approaches have reported better estimation capabilities, in terms of increased sensitivity and specificity, than the
standard statistical analyses in the spatial domain. In line with these previous studies, the present report pro-
poses a statistical analysis in the wavelet domain for the estimation of inter-group differences from structural
MRI data. The procedure, called wavelet-based morphometry (WBM), was implemented under a voxel-based
morphometry (VBM) style analysis. It was evaluated by comparing the gray-matter images of a group of 32
healthy subjects whose images were artificially altered to induce thinning of the cortex, with a different group
of 32 healthy subjects whose images were unaltered. In order to quantify the performance of the reconstruction
from a practical perspective, the same comparison was also conductedwith standard VBM using SPM's Gaussian
random fields and FSL's cluster-based statistics, family-wise error corrected, for datasets spatially-normalized via
two different registration methods (i.e., SyN and FNIRT). The effect of using different amounts of smoothing,
Battle–Lemarié filters and resolution levels in the wavelet transform was also investigated. Results support the
proposed approach as a different and promising methodology to assess the structural morphometric differences
between different populations of subjects.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Voxel-based morphometry (VBM) is a whole-brain technique for
characterizing regional cerebral volume differences frommagnetic res-
onance imaging (MRI) data (Ashburner and Friston, 2000). In recent
years, VBM has been useful in characterizing subtle changes in brain
structure in a variety of diseases associated with neurological and psy-
chiatry dysfunction (Mechelli et al., 2005) such as schizophrenia (Bora
et al., 2011; Pomarol-Clotet et al., 2010; Radua et al., 2012), bipolar dis-
orders (Selvaraj et al., 2012), autism (Radua et al., 2011), anxiety

disorders (Radua et al., 2010), attention deficit hyperactivity disorder
(Nakao et al., 2011), obsessive–compulsive disorder (Radua and
Mataix-Cols, 2009), temporal lobe epilepsy (Keller and Roberts, 2008),
Parkinson's disease (Beyer et al., 2007), Huntington's disease (Hobbs
et al., 2010), developmental and congenital disorders (Garrido et al.,
2009), Klinefelter's syndrome (Bryant et al., 2011), progressive supra-
nuclear palsy (Price et al., 2004), Down's syndrome (Teipel et al.,
2004), herpes simplex encephalitis (Gitelman et al., 2001), progressive
aphasia and Alzheimer's disease (Zahn et al., 2005), to cite a few. The
technique has been also used with healthy subjects to investigate the
impact of learning and practice on brain structures (Maguire et al.,
2003; Sluming et al., 2002), as well as the impact of aging (Hutton et
al., 2009). The number of publications using VBM has increased consid-
erably. In the last ten years, more than 1900 publications were entered
into amajor database ofmedical literature, PubMed, under the keyword
“Voxel-based morphometry”.

At its simplest, VBM involves a voxel-wise comparison (i.e., statistical
test) of the local probability of gray-matter tissue images between two
groups of subjects. The statistical test is computed bymeans of a General
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Linear Model (GLM) that is able to correct for the effects of no interest.
The spatial location of the inter-group differences is identified by apply-
ing an appropriate threshold to the resulting statistical map. The selec-
tion of this threshold is challenging because of the large number of
brain voxels under investigation (e.g., typically N≈450,000 for a voxel
resolution of 1.5×1.5×1.5 mm3, N≈200,000 for a voxel resolution of
2×2×2 mm3), and the inevitable spatial correlation among voxels
caused by the acquisition process and the spatial pre-processing of
data. Use of uncorrected p-values would lead to high false positive
rates, while Bonferroni correction (Bonferroni, 1936) for multiple com-
parisons would require such low p-values that only very strong effects
could be detected.

A widely adopted strategy to maximize sensitivity while controlling
for false positive rate, is to identify cluster patterns of significant
inter-group differences rather than identify isolated significant voxels
(Bullmore et al., 1999; Hayasaka and Nichols, 2003). These cluster-
based thresholding techniques make use of spatial neighborhood
information to boost belief in extended areas of statistical difference.
However, they are limited by the need to define ad-hoc initial parame-
ters in the algorithmsuch as the initial cluster-forming threshold,which
has been reported to have a large impact on the results (Smith and
Nichols, 2009). More importantly, the theory behind this type of analy-
sis is based on the assumption that the smoothness of the residuals
is spatially invariant throughout the brain. However, this is unlikely to
be the case in real studies due to the highly non-stationary nature
of the underlying brain anatomy (Mechelli et al., 2005). This non-
stationary in smoothness may lead to the inexact identification of clus-
ters of significant differences. For instance, by chance alone, clusters of
large size will occur in regions where images are very smooth and
small size clusters will occur in regions where the images are very
rough. In consequence, cluster-based thresholding is biased towards
detecting findings in some regions while not detecting findings in
others (Good et al., 2001; Mechelli et al., 2005).

This problem has been addressed via the Random Field Theory (RFT)
(Worsley and Friston, 1995). In RFT the final threshold can be obtained
without penalizing by the extent statistic related to the size of the clus-
ters (Mechelli et al., 2005). However, the random field approximation
commonly used in Statistical Parametric Mapping (SPM) analysis
(Ashburner, 2009) hinges on strict assumptions about the distribution
of the data that may not always be applicable to VBM (Silver et al.,
2011). It assumes that the errorfields are a reasonable lattice approxima-
tion to an underlying continuous random process with a multivariate
Gaussian distribution, which may not be the case in small and moderate
samples where the error fields will not be very smooth. In practice, to
promote the validity of this assumption, the data is pre-smoothed with
a Gaussian filter with fixed size. This operation improves the signal-
to-noise ratio and the compliance with the referred Gaussian distribu-
tional assumption, but at the cost of a loss of resolution and an increase
in the spatial correlation among voxels. By smoothing the images with
a filter of fixed size, the probability of detecting “signals” of that particu-
lar size is maximized (Mutihac, 2008). The explanation for this comes
from the matched filter theorem in signal processing, which states that
a signal added to white noise is best detected by smoothing with a filter
with the same size and shape as the signal. Therefore, the strategy of
using a Gaussian kernel with fixed sizemay not be optimal for situations
where the spatial extent of the local differences in brainmorphometry is
different in different parts of the brain. Furthermore, it is not easy to a
priori choose the optimal smoothing level because the size and shape
of the signal of interest are not known in advance. Severalmethodologies
have become available to detect signals at different smoothing levels
(Poline and Mazoyer, 1994a,b; Shafie et al., 2003; Worsley, 2001;
Worsley et al., 1996). These approaches fall within the class of
multi-resolution methods, in which the images are first smoothed with
kernels with different sizes, and the statistical analysis is carried out in
the resulting set of filtered images. The main shortcoming of this style
of analysis, however, is the potential reduction of specificity caused by

the increase in the number of statistical tests, which is a consequence
of the non-orthogonality and redundancy of the decompositions
(Desco et al., 2005).

Another multi-resolution technique is based on the wavelet trans-
form. Concisely, the discrete orthogonal wavelet transform (DOWT)
projects an image onto a set of basis functions without alterations. It
transforms estimators in one domain into estimators in the other do-
main, with isometry of risks (Donoho and Johnstone, 1995). DOWT has
a property of data compaction; the energy of a signal tends to be concen-
trated in a few large wavelet coefficients while the energy of the noise is
more evenly distributed across a large number of much smaller coeffi-
cients (Gençay et al., 2002). Some interesting links between theGaussian
smoothing in SPM and the wavelet decomposition have been demon-
strated (Fadili and Bullmore, 2004; Van De Ville et al., 2003).

The DOWT has the ability to decompose the images at different
spatial-scale sub-bands and to concentrate the information from high
spatial correlated neighboring voxels into a few number of (approxi-
mately decorrelated) wavelet coefficients in an adaptive manner (i.e.,
without a priori assumptions about the size and shape of the lesions
and the underlying unknown smoothness). This style of analysis allows
one to take advantage of the spatial correlations in the data (Desco et al.,
2001). The application of univariate tests over a small number of large
wavelet coefficients has been advocated as away of reducing the search
space or the number of tests required for whole brain mapping (Desco
et al., 2001; Fadili and Bullmore, 2004). Some functional imaging stud-
ies (e.g., fMRI and PET) in the wavelet domain have reported better es-
timation capabilities, in terms of increased sensitivity (Brammer, 1998;
Ruttimann et al., 1998; Unser et al., 1995) and specificity (Desco et al.,
2005) than the standard statistical analyses in the spatial domain. How-
ever, it should be pointed out that the statistical inference based on
DOWT has its own limitations. Importantly, it is not yet clear how to
fully transfer the estimated significant differences from the wavelet to
the spatial domain (Van De Ville et al., 2007).

The first report in fMRI analysis working in the wavelet domain was
presented in Ruttimann et al. (1998), inwhich an omnibus χ2 test on all
coefficients in each level of the DOWTwas used to identify which levels
represented signals. In a second step, only the coefficients in those se-
lected levels were individually tested using a Bonferroni-corrected
threshold (Bonferroni, 1936). Subsequently, different strategies have
been reported to select the optimal subset of wavelets coefficients, in-
cluding a procedure based on the generalized degrees of freedommea-
sure (Shen et al., 2002) and a Bayesian bivariate shrinkage algorithm
(Sendur and Selesnick, 2002). Similarly, the significance threshold has
been computed using different techniques such as the false discovery
rate (FDR) procedure (Fadili and Bullmore, 2004; Shen et al., 2002),
re-sampling techniques (Sendur et al., 2007) and Bayesian regression
(Turkheimer et al., 2006). As was indicated in Bullmore et al. (2004),
the working philosophy behind some of these approaches can be sum-
marized as follows:

(1) Calculate the wavelet coefficients of the image.
(2) Use a wavelet shrinkage algorithm to eliminate the majority of

noisy coefficients, retaining a reduced number of coefficients.
(3) Apply a standard multiple hypothesis testing algorithm, to test

the reduced subset of coefficients.
(4) Estimate the signal by the inverse wavelet transform using

only those coefficients which survived step (3).

In line with these previous studies, the present report proposes
the implementation of amethodology in thewavelet domain for the sta-
tistical estimation of inter-group differences from brain gray-matter
magnetic resonance images. The procedure is called wavelet-based
morphometry (WBM), in analogy with the well-known VBM method
(Ashburner and Friston, 2000).

Themethodology is evaluated by comparing the gray-matter images
obtained from two different groups of 32 healthy subjects. Images cor-
responding to one group have been artificially altered in order to induce
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