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Quantitative assessment of themyelin content in white matter (WM) using MRI has become a useful tool for in-
vestigating myelin-related diseases, such as multiple sclerosis (MS). Myelin water fraction (MWF) maps can be
estimated pixel-by-pixel by a determination of the T2 or T2⁎ spectrum from signal decay measurements at each
individual image pixel. However, detection of parameters from themeasured decay curve, assuming a combina-
tion of smoothmulti-exponential curves, results in a nonlinear and seriously ill-posed problem. In this paper, we
propose a new method to obtain a stable MWF map robust to the presence of noise while sustaining sufficient
resolution, which uses weighted combinations of measured decay signals in a spatially independent neighbor-
hood to combine tissues with similar relaxation parameters. To determine optimal weighting factors, we define
a spatially independent neighborhood for each pixel and a distance with respect to decay rates that effectively
includes pixels with similar decay characteristics, and which therefore have similar relaxation parameters. We
recover the MWF values by using optimally weighted decay curves. We use numerical simulations and in vitro
and in vivo experimental brain data scanned with a multi-gradient-echo sequence to demonstrate the feasibility
of our proposed algorithm and to highlight its advantages compared to the conventional method.

© 2013 Elsevier Inc. All rights reserved.

Introduction

A magnetic resonance imaging (MRI) scanner can be used to detect
structural abnormalities of the body by measuring the magnetic proper-
ties of water molecules in biological tissues. Using the T2 decay signals in
the brain, three different T2 relaxation components corresponding to the
presence of three water pools in thewhitematter region can be detected
(MacKay et al., 1994; Whittall et al., 1997). The fast relaxing T2 compo-
nent represents the water pool between the hydrophobic bilayers of
themyelin sheath (Laule et al., 2004, 2006;MacKay et al., 2006). Two dif-
ferent relaxing components are assigned to intra/extracellular water and
to cerebrospinal fluid. The myelin water fraction (MWF), defined as the
ratio of the signal intensity of the shortest T2 component to the total,
shows specificity for myelin content in neurological tissues. Therefore,
determination of the MWF can reveal abnormalities in myelin-related
disease states, such as multiple sclerosis (MS). Analysis of T2 relaxation
decay curves has been used to investigate different water compartments
within heterogeneous tissue (Does and Gore, 2002; Mackay et al., 2006;

Valentine et al., 2007;Wachowicz and Snyder, 2002). Similar approaches
based on an analysis of T2⁎ (rather than T2) decay curves have also been
used to study microscopic components (Bender and Klose, 2009; He
and Yablonskiy, 2007; Yablonskiy, 1998) and quantify MWF values in
the brain (Du et al., 2007; Hwang et al., 2010; Lenz et al., 2010, 2011).

The determination of the three different T2 (or T2⁎) relaxation compo-
nents frommeasured decay curves is challenging because of the inherent
instability of the problem, i.e., the estimation of parameters for the com-
bination of smoothmulti-exponential curvesmay be severely affected by
the presence of noise in the measured decay data. To circumvent this
ill-posed nature of the MWF estimation problem, various algorithms
have been developed to measure the MWF in white matter, such as the
non-negative least squares (NNLS) algorithm (Lawson and Hanson,
1974), the regularized non-negative least squares (rNNLS) algorithm
(Graham et al., 1996; Whittall and MacKay, 1989), a spatially-
regularized nonnegative least squares (srNNLS) algorithm (Hwang and
Du, 2009), and rNNLS-after-filtering algorithms (Jones et al., 2003; Oh
et al., 2006). These algorithms aremostly based on the continuous distri-
bution of T2(⁎) components with different signal strengths. Because there
are numerous unknowns to be determined, smoothing constraints are
usually incorporated to determine the amplitudes of the relaxation com-
ponents. Depending on the number of echoes and the algorithms used,
different signal-to-noise ratios (SNRs) are recommended for reliable so-
lutions. Generally, a high SNR with a noise standard deviation less than
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1% of the signal strength at the shortest echo time is suggested as amin-
imum acceptable SNR (Graham et al., 1996; Kolind et al., 2009; Laule et
al., 2007). The conventional acquisition method usually requires four
averages and takes 26 min of scan time to achieve a reasonable SNR
(Jones et al., 2003; Kolind et al., 2009; Laule et al., 2004, 2006, 2007;
Whittall et al., 1997). Another type of algorithm used to analyze T2

(⁎)
re-

laxation decay curves is a three-pool model method, which is based on
discrete T2

(⁎)
components where there are only three representative T2

(⁎)

components with three different signal strengths (Andrews et al., 2005;
Du et al., 2007; Hwang et al., 2010; Lancaster et al., 2003). In the
three-pool model, there are seven unknowns to be estimated, which
is substantially less than the number of unknowns in the afore-
mentioned NNLS-based algorithms. However, this problem is still
ill-posed, because the three T2

(⁎)
values and the corresponding signal

strengths have to be estimated at the same time in the presence of
noise. Furthermore, caution should be taken when using this approach
for pathologic datasets or other brain regions with additional T2

(⁎) com-
ponents, because the three-pool model parameters are optimized for
commonWM regions, and errors may be introduced in pathologic situ-
ations with the presence of additional T2

(⁎)
components. For more prac-

tical applications, it is critical to stabilize the ill-posed nature and extract
useful information from the noisy measured data.

The purpose of this paper is to present a new method for robust
myelin water quantification in the brain using a tissue-relaxation-
dependent denoising technique. The proposed method provides a
stable MWF map, while sustaining sufficient resolution using a
weighted combination of measured decay curves in a spatially inde-
pendent neighborhood with similar relaxation parameters. In con-
trast to conventional denoising techniques such as linear filters,
median filters, and anisotropic diffusion filters, the proposed method
is optimal for MWF estimation in the sense that measurements are
processed based on the decay properties of the tissues, rather than
on spatial proximity or intensity similarity. To determine optimal
weights for the combination of the measured decay curves, we define
a new spatially independent metric that measures the decay similar-
ity, D(r,s), between two measured decay curves S(r,tn) and S(s,tn),
n=1,…, N, at pixels r and s. The defined distance function has the
property D(r,s)=0 if and only if two pixels have the same relaxation
parameters and MWF values. Considering the defined metric D(r,s),
which does not depend on the spatial metric, we determine
weighting factors ωh,ρ(r,s) using the concept of a non-local (NL)
means filter, which was originally developed to solve issues related
to noise removal in images while maintaining the integrity of the
relevant image information (Buades et al., 2005; Freeman et al.,
2000; Roth and Black, 2005; Zhu et al., 1998). We determine an opti-
mally denoised decay curve as a weighted combination withωh,ρ(r,s),
which eliminates dissimilar neighboring pixels that are likely to have
dissimilar relaxation parameters and therefore different MWF values.

We use a multi-gradient-echo (MGRE) pulse sequence, which
allows for the acquisition of multiple sampling points during the
fast decay of the myelin water signal, to verify the proposed method.
To demonstrate how the proposed algorithm works, we conducted
simulations whereby noise levels were varied and compared to noise-
less data. Both in vitro and in vivo experiments demonstrated that our
proposed method considerably reduces noise artifacts and sustains
the resolution of MWF maps.

Material and methods

Three-pool relaxation model

The following equation is the three-pool relaxation model we
used to measure myelin (my), myelinated axon (ma), and mixed
water (mx) pool fraction with seven unknowns:

S r; tð Þ ¼ Amye
−t=T2;my⁎ þ Amae

−t=T2;ma⁎ þ Amxe
−t=T2;mx⁎ þ Abl ð1Þ

where Amy, Ama, and Amx denote the amplitudes of the signals arising
from the three water pools, respectively, and Abl is any residual base-
line signal. Because the measured signal S(r,t) is the summation of
three smooth exponential signals at the pixel r, it is difficult to deter-
mine T2,my⁎ , T2,ma⁎ , and T2,mx⁎ stably, in correlation to the coefficients
Amy, Ama, Amx, and Abl, because small perturbations of the coefficients
may result in significant errors when determining all of the
parameters.

To simplify the terminologies, we rewrote Eq. (1) in the
discretized form

S r; tnð Þ ¼ a1e
−b1tn þ a2e

−b2tn þ a3e
−b3tn þ Abl; n ¼ 1;2; ⋯;N ð2Þ

where a1=Amy, a2=Ama, a3=Amx,b1 ¼ 1
T2;my
⁎ ,b2 ¼ 1

T2;ma
⁎ ,b3 ¼ 1

T2;mx
⁎ , and tn

is the nth echo time, respectively.
A conventional optimization problem for Eq. (2) is to find the

coefficients ai and bi for i=1,2,3 and Abl based on minimizing the
following least squares problem:

min
ai ≥0;bi ≥0;Ablf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

a1e
−b1tn þ a2e

−b2tn þ a3e
−b3tn þ Abl−S r; tnð Þ

� �2
:

r
ð3Þ

Determination of T2⁎ components and spectra

To determine the spatially independent neighborhood, we defined
a distance function between the measured T2⁎ decay signals S(r,tn)
and S(s,tn):

D r; sð Þ :¼ S rð Þ−S sð Þk k1
h rð Þ ¼

XN
n¼1

S r; tnð Þ−S s; tnð Þj j
h rð Þ ð4Þ

where h(r) is a temporal noise level in the decay signals. In our
study, h(r) was approximated by the standard deviation of the fitting
residuals with the original decay signals (Hwang et al., 2011; Laule
et al., 2008).

The defined distance function D(r,s) is related to the coefficients ai
and bi for i=1,2,3, and Abl in Eq. (2) such that:

ai rð Þ ¼ ai sð Þ; bi rð Þ ¼ bi sð Þ;Abl rð Þ ¼ Abl sð Þ ⇔ D r; sð Þ ¼ 0: ð5Þ

Using Eqs. (4)–(5), we can define a spatially independent neigh-
borhood at each pixel r by introducing a weighting factor ωρ with re-
spect to the non-spatial decay-dependent distance D(r,s) as follows:

ωρ r; sð Þ :¼ 1
ζr

e−D r;sð Þ for s ∈ Bρ rð Þ ð6Þ

where ζ r :¼ ∑s∈Bρ rð Þe
−D r;sð Þ is a normalization constant ensuring that

∑ sωρ(r,s)=1, and Bρ(r) is a disk centered at r with a radius ρ. The
application of the weighted sum of decay signals with ωρ results in
high SNR decay data, SNL, at location r;

SNL r; tnð Þ :¼ ∑
s∈Bρ rð Þ

ωρ r; sð ÞS s; tnð Þ: ð7Þ

Because the weighting factor ωρ(r,s) depends only on the
non-spatial decay-dependent distance of the decay signals, the spatial
radius ρ of the neighborhood Bρ(r) can be extended to the whole im-
aging area, not just the pixels adjacent to pixel r (i.e. spatially inde-
pendent neighborhood). At the fixed location r, the non-spatial
decay-dependent distance D(r,s) implies that the weighting factor
ωρ(r,s) is similarly weighted with ωρ(r,r) when the measured T2⁎

decay data S(s,tn) is similar to S(r,tn). Thus, the weighting factor
ωρ(r,s) estimates the T2⁎ similarity between S(r,tn) and S(s,tn). There-
fore, the summation in Eq. (7) can effectively avoid the inclusion of
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