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Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information
and machine learning with 3D maps derived from brain images may help detect subtle differences or classify
subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to para-
metric surface models for diagnostic classification. We use this approach to identify cortical surface features
for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate con-
formal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameteri-
zation approach provides a natural way to register anatomical surfaces across subjects using a constrained
harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric ten-
sors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D
image is large, sparse learning is a promising method to select a subset of imaging features and to improve
classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using
the surface features selected by an L1-norm based sparse learning method. Stability selection is applied to
validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects
with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the
local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics
including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method
also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the
Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies,
and may assist with image-based classification.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Computer-assisted diagnostic classification is becoming increasingly
popular in neuroimaging, especially given the vast number of features
available to assist diagnosis in a 3D brain image. Early diagnosis and
treatment of degenerative brain diseases, such as Alzheimer's disease,
depends on the ability to identify disease in its earliest stages, when
brain changes may be subtle. In addition, there is interest in under-
standingwhich brain imaging features are best for diagnostic classifica-
tion, as well as biomarkers to measure the severity of disease burden.
Over the last decade, many methods have been proposed to study the
problem of diagnostic classification based on structural magnetic reso-
nance imaging (MRI) (Batmanghelich et al., 2012; Cuingnet et al.,

2010, 2011; Fan et al., 2007; Golland et al., 2001; Gutman et al., 2009;
Sabuncu and Van Leemput, 2011; Sun et al., 2009a; Vemuri et al.,
2008; Xiang et al., 2009; Yushkevich et al., 2003), positron emission to-
mography (PET) (Chen et al., 2011; López et al., 2011), single photon
emitting computer tomography (SPECT) (Fung and Stoeckel, 2007) or
a combination of multi-source datasets (Calhoun and Adali, 2009;
Chen et al., 2009; Correa et al., 2010; Groves et al., 2011; Jack et al.,
2010; Kohannim et al., 2010; Sui et al., 2011; Yang et al., 2010; Yuan
et al., 2012a). Surface-based modeling is useful in brain imaging to
help analyze anatomical shapes, to detect abnormalities in cortical sur-
face folding and thickness, and to statistically combine or compare 3D
anatomical models across subjects (Drury et al., 1996; Fischl et al.,
1999; Thompson and Toga, 1996; Vaillant et al., 2007; Wang et al.,
2010c, 2011b; Yeo et al., 2008). Many surface-based morphometry
studies describe structural differences at the group level, i.e., between
different diagnostic groups. More recently, morphometric maps have
also been used to classify individual subjects into diagnostic groups
(Costafreda et al., 2011; Ferrarini et al., 2008; Kohannim et al., 2010;
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Sun et al., 2009a; Wang et al., 2010b). In one study (Sun et al., 2009a),
maps of cortical gray matter density achieved 86.1% accuracy in dis-
criminating psychotic patients from control subjects, in leave-one-out
tests. In related work (Ferrarini et al., 2008), the notion of biomarker
“nodes” was proposed, i.e. regions on surface meshes that contribute
most to diagnostic classification; the authors tested their approach on
ventricular surface models from Alzheimer's disease patients and
matched controls. Overall, a set of surface-basedmorphometric features
combined with a machine learning algorithm may offer a promising
way to improve the performance of computer-assisted diagnostic
systems.

An important question for diagnostic classification based on
voxel-based or surface-based morphometric maps is which statistics
are best to analyze. Statistics derived from anatomical surface models,
such as gray matter thickness maps (Thompson et al., 2003, 2005), ra-
dial distances (distances from the medial core to each surface point)
(Apostolova et al., 2010a, 2010b; Carmichael et al., 2006, 2007a,
2007b, 2007c; Chou et al., 2008, 2009; Morra et al., 2009, 2010;
Styner et al., 2004; Thompson et al., 2004a, 2007), spherical harmonic
analysis (Gutman et al., 2009; Styner et al., 2005), local area differ-
ences (related to the determinant of the Jacobian matrix) (Chung et
al., 2008; Davatzikos et al., 1996; Woods, 2003), Gaussian random
fields (Bansal et al., 2007), Reeb graphs (another way to compute ra-
dial distances) (Shi et al., 2009) have all been applied to analyze the
shape and geometry of various brain structures. Surface tensor-
based morphometry (TBM) (Chung et al., 2008; Davatzikos et al.,
1996; Thompson et al., 2000a; Woods, 2003) is an intrinsic surface
statistic that examines spatial derivatives of the deformation maps
that register brains to common templates, and can help to detect
subtle differences in local surface morphometry. In recent studies
(Wang et al., 2008b, 2009a, 2010c, 2011b), surface multivariate TBM
(mTBM) was found to be more sensitive for detecting group differ-
ences than other standard TBM-based statistics. As a result, here we
decided to use mTBM statistics as the surface statistics to be included
in a diagnostic classifier.

Three-dimensional statistical maps can detect consistent local dif-
ferences in anatomical surfaces. But, when they are applied to classifica-
tion, the feature dimension is usually much larger than the number of
subjects in the sample being analyzed — the “high dimension/small
sample size problem”. When a vast number of variables are measured
from a small number of subjects, it is often possible to divide the sub-
jects into groups based on the observed features, but the resulting clas-
sification rulesmay generalize poorly to new observations. To select the
most useful features, feature reduction can be beneficial. Feature selec-
tion approaches are widely used in machine learning, (e.g. Fan et al.,
2005; Guyon et al., 2002; Kuncheva and Rodríguez, 2010; Stearns,
1976). Even so, most methods still generate very large numbers of
features, making it difficult to state intuitively why features are being
used to make biological inferences. To address this, sparse learning
methods have been proposed to select the most biologically germane
features (Friedman et al., 2008; Tibshirani, 1996). Sparse learning
methods enjoy strong theoretical properties (Candès and Wakin,
2008; Donoho, 2006) and are receiving increased attention in many
application areas (Beck and Teboulle, 2009; Candès et al., 2006;
Figueiredo et al., 2007; Wu et al., 2009). Sparse learning has also been
applied in neuroimaging to study genetic influences on the brain
(Hibar et al., 2011; Kohannim et al., 2011; Le Floch et al., 2011;
Vounou et al., 2010, 2012; Wang et al., 2012a), functional connectivity
(Huang et al., 2010; Ryali et al., 2012), and for outcome predictions
(Shen et al., 2010; Stonnington et al., 2010; Sun et al., 2009a; Wang
et al., 2010a, 2010b, 2011a). In many computer vision, medical imaging
and bioinformatics applications, using sparsity as a prior leads to
state-of-the-art results (Liu and Ye, 2010; Liu et al., 2010b; Sun et al.,
2009a; Wright et al., 2009).

Here we developed a new approach, based on conformal slit map-
ping (Wang et al., 2009a), multivariate tensor-based morphometry

(mTBM), and sparse learning, to identify cortical biomarkers for clas-
sification problems. We hypothesized that mTBM might improve the
accuracy for analyzing group differences in neuroimaging data, and
for helping individual classification, when used with a sparse learning
classifier. We tested our hypothesis on a dataset used in a prior work
(Thompson et al., 2005): it consists of 42 subjects with genetically
confirmed William syndrome and 40 age-matched controls. The
point of using Williams syndrome data as a test is that the diagnosis
can be verified using a genetic test. Despite many years of research
on brain differences in Williams syndrome – finding differences
widely distributed in the brain – no one known trait offers powerful
group classification on its own. As such, we chose this dataset as an
interesting test case, as it may also identify distinctive cortical fea-
tures for further study.

Fig. 1 summarizes the steps we used to analyze cortical surface
morphometry. The cortical surface data was from our prior study
(Thompson et al., 2005). With 10 selected landmarks on each cortical
hemispheric surface, we computed a conformal mapping from a mul-
tiply connected mesh to the so-called slit domain, which consists of a
canonical rectangle or disk in which 3D curved landmarks on the
original surfaces are mapped to parallel lines or concentric slits in
the slit domain (Wang et al., 2008a). In this canonical parametric do-
main, cortical surfaces were matched by a constrained harmonic map
(Wang et al., 2007). Multivariate surface statistics were computed
from the registered surfaces (Wang et al., 2010c). In one experiment,
they were applied to identify regions with significant differences be-
tween the two groups. In another experiment, cortical features were
fed to a sparse learning method to classify each subject into one of
two groups by a leave-one-out test. We also tested other possible sur-
face morphometry statistics to compare them with our multivariate
surface statistics. Although the method is illustrated on Williams syn-
drome data, it is intended to be useful for other disorders as well.
Tests on more diverse datasets are reserved for further work.

Subjects and methods

Subjects

We tested our algorithm on data from a prior study by Thompson
et al. (2005). Subjects and brain-scanning protocols were used exact-
ly as in the study by (Reiss et al., 2004; Thompson et al., 2005). Exclu-
sion criteria included a history of medical conditions not typically
associated withWS, such as epilepsy or other neurological conditions.
All WS participants were evaluated at the Salk Institute (La Jolla, CA) as
part of a program project on genetics, neuroanatomy, neurophysiology,
and cognition. WS diagnosis was genetically confirmed in all cases by
fluorescent in situ hybridization, which tested for deletion of one copy
of the elastin gene on chromosome 7. A total of 42 subjects with genet-
ically confirmed Williams syndrome and 40 age-matched healthy con-
trols were included in the study. The studying subject age and sex
information is listed in Table 1. Wechsler Full-Scale intelligence quo-
tient (IQ) scores were available for 41 of the 42 WS subjects (mean,
68±9; range, 46–83); the untested subject exhibited similar levels of
cognitive function on other measures. As in the earlier studies (Reiss
et al., 2004; Thompson et al., 2005), healthy control subjects (with no
history of major psychiatric, neurological, or cognitive impairment)
were recruited at both the Salk Institute and Stanford University. Con-
trol subjects were further screened to rule out any history of learning,
language, or behavioral disorder. The majority of controls in the study
did not have IQ testing performed. Those that did (n=16) had a
mean full-scale IQ of 104 with an SD of 12 (range, 86–126). All proce-
dureswere approved by the Institutional Review Boards of both institu-
tions, and all participants provided informed consent (and parents or
guardians provided written consent where appropriate).

3D MRI brain images were collected using a GE-Signa 1.5 T scan-
ner (General Electric, Milwaukee, MI). The same 3D spoiled gradient
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