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We investigate the properties of the Phase Locking Value (PLV) and the Phase Lag Index (PLI) as metrics for
quantifying interactions in bivariate local field potential (LFP), electroencephalography (EEG) and magne-
toencephalography (MEG) data. In particular we describe the relationship between nonparametric esti-
mates of PLV and PLI and the parameters of two distributions that can both be used to model phase
interactions. The first of these is the von Mises distribution, for which the sample PLV is a maximum likeli-
hood estimator. The second is the relative phase distribution associated with bivariate circularly symmetric
complex Gaussian data. We derive an explicit expression for the PLV for this distribution and show that it is
a function of the cross-correlation between the two signals. We compare the bias and variance of the sample
PLV and the PLV computed from the cross-correlation. We also show that both the von Mises and Gaussian
models are suitable for representing relative phase in application to LFP data from a visually-cued motor
study in macaque. We then compare results using the two different PLV estimators and conclude that, for
this data, the sample PLV provides equivalent information to the cross-correlation of the two complex
time series.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Information processing in the brain involves coordination of neu-
ronal populations distributed throughout the cerebral cortex
(Horwitz, 2003; Tononi and Edelman, 1998). Detecting and quantify-
ing the interactions between these neuronal populations can lead to
important insights into the dynamic networks that underlie human
brain function. Noninvasive electrophysiological mapping with the
electroencephalogram (EEG) and magnetoencephalogram (MEG), as
well as invasive recordings in patients and nonhuman primates, pro-
vides data that we can use to explore these interactions. Electrophys-
iological signals can be usefully characterized in terms of their
oscillatory components either through band-pass filtering into the
standard frequency bands (delta, theta, alpha, beta, and gamma) or
using broadband spectral representations of the data. Interactions
can then be analyzed using measures of within and between
frequency-band coupling between electrode or magnetometer pairs.
If EEG or MEG data are first mapped back onto the cortex using an in-
verse mapping procedure (Baillet et al., 2001), then we can also com-
pute interactions between time series averaged over cortical regions
of interests (ROIs).

In this paper we restrict attention to within-band coupling comput-
ed between pairs of electrodes, magnetometers or cortical ROIs. The

most widely used measure defines interaction in terms of coherence,
a complex measure of phase and amplitude similarity computed as a
function of frequency (Challis and Kitney, 1991; Klein et al., 2006;
Nunez et al., 1997). An alternative class of measures considers only
the relative phase through computation of a phase locking value be-
tween the two signals (Tass et al., 1998). Phase locking is a fundamental
concept in dynamical systems that has been used in control systems
(the phase-locked loop) and in the analysis of nonlinear, chaotic and
nonstationary systems. Since the brain is a nonlinear dynamical system,
phase locking is an appropriate approach to quantifying interaction. A
more pragmatic argument for its use in studies of LFPs (local field po-
tentials), EEG and MEG is that it is robust to fluctuations in amplitude
that may contain less information about interactions than does the rel-
ative phase (Lachaux et al., 1999; Mormann et al., 2000).

The most commonly used phase interaction measure is the Phase
Locking Value (PLV), the absolute value of the mean phase difference
between the two signals expressed as a complex unit-length vector
(Lachaux et al., 1999; Mormann et al., 2000). If the marginal distribu-
tions for the two signals are uniform and the signals are independent
then the relative phase will also have a uniform distribution and the
PLVwill be zero. Conversely, if the phases of the two signals are strongly
coupled then the PLV will approach unity. For event-related studies we
would expect the marginal to be uniform across trials unless the phase
is locked to a stimulus. In that case, wemay have nonuniformmarginals
which could in principle lead to false indications of phase locking.

When comparing electrode pairs that share a common reference
or overlapping lead field sensitivities, or when investigating cortical
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current density maps of limited resolution, the PLV suffers from sen-
sitivity to linear mixing in which the same source can contribute to
both channels. In these cases, the PLV can indicate an apparent
phase locking with the relative phases concentrated around zero.
Stam et al. (2007) proposed an alternative measure, the Phase Lag
Index (PLI) that is robust to the common source problem. PLI quan-
tifies the asymmetry of the relative phase distribution about zero
and so will produce large values only when the relative phase is
peaked away from zero.

In this paper we first define nonparametric estimates of PLV and
PLI, and consider the bias intrinsic in the sample PLV estimator. We
derive an expression for the unbiased estimator of the squared PLV
and show equivalence to the Pairwise Phase Consistency (PPC) met-
ric recently proposed by Vinck et al. (2010). We then investigate the
relationship between PLV and PLI and two possible parametric distri-
butions that can be used to model relative phase. The first of these,
the von Mises distributions, is the maximum entropy distribution
over the class of circular distributions (Jammalamadaka and
Sengupta, 2001). The second model is the relative phase distribution
associated with complex circularly symmetric Gaussian processes.
This model is appropriate for complex signals generated from joint-
ly Gaussian real signals through use of the Hilbert transform. The
relative phase distribution is obtained by marginalizing the joint
Gaussian distribution with respect to the amplitude of the two
complex signals. We derive closed-form expressions for the rela-
tionship between PLV and the parameters of the von Mises and
Gaussian models.

Invasive microelectrode recordings can be used to investigate
both multiunit activity, which reflects axonal firing rates, and the
local field potentials (LFPs) associated with dendritic and volume
conduction currents. In this paper we are concerned with the appli-
cation of PLV and PLI measures to LFPs as well as noninvasive EEG
and MEGmeasurements that similarly result from dendritic and vol-
ume conduction currents. We use LFP recordings from a macaque
monkey study (Bressler et al., 1999) to investigate whether the von
Mises and Gaussian distributions are appropriate for modeling rela-
tive phase between pairs of electrodes. We then compare the ability
of two different estimators of PLV, associated respectively with the
von Mises and Gaussian models, to detect phase locking between
electrodes.

The goal of this work is to clarify the relationships between non-
parametric estimators of PLV and PLI and two well-known parametric
distributions that could be used to model phase interactions. A sec-
ond goal is to investigate the relationship between PLV and
cross-correlation when analyzing LFP data. We begin by stating, and
where appropriate deriving, these relationships. We then present
computational simulations and analysis of experimental LFP data
using different PLV estimators.

Measures of phase synchronization

The phase locking value and phase lag index

Phase synchronization between two narrow-band signals is fre-
quently characterized by the Phase Locking Value (PLV). Consider a
pair of real signals s1(t) and s2(t), that have been band-pass filtered
to a frequency range of interest. Analytic signals zi tð Þ ¼ Ai tð Þejϕi tð Þ

for i={1,2} and j ¼
ffiffiffiffiffiffiffiffi
−1

p
are obtained from si(t) using the Hilbert

transform:

zi tð Þ ¼ si tð Þ þ jHT si tð Þð Þ ð1Þ

where HT si tð Þð Þ is the Hilbert transform of si(t) defined as

HT si tð Þð Þ ¼ 1
π
P:V:∫∞

−∞
si tð Þ
t−τ

dτ ð2Þ

and P.V. denotes Cauchy principal value. Once the analytic signals are
defined, the relative phase can be computed as

Δϕ tð Þ ¼ arg
z1 tð Þz�2 tð Þ
z1 tð Þjjz2 tð Þj j

� �
: ð3Þ

The instantaneous PLV is then defined as (Celka, 2007; Lachaux et
al., 1999)

PLV tð Þ≜ E ejΔϕ tð Þh i��� ��� ð4Þ

where E :½ � denotes the expected value. The PLV takes values on [0, 1]
with 0 reflecting the case where there is no phase synchrony and 1
where the relative phase between the two signals is identical in all
trials. PLV can therefore be viewed as a measure of trial to trial vari-
ability in the relative phases of two signals. In this work we use the
Hilbert transform but the continuous Morlet wavelet transform can
also be used to compute complex signals, producing separate
band-pass signals for each scaling of the wavelet. Quiroga et al.
(2002) and Le Van Quyen et al. (2001) have shown that both
approaches yield similar results.

When computing synchrony between pairs of electrodes or corti-
cal locations, nonzero PLVs can arise from a single source contributing
to both signals as a result of either volume conduction in channel
space or limited spatial resolution in the case of cortical current den-
sity maps (Amor et al., 2005; David et al., 2002; Guevara et al., 2005;
Nunez et al., 1997; Tass et al., 1998; Vinck et al., 2011). In this case of
direct linear mixing there is no phase lag between the two signals po-
tentially resulting in a large value of PLV. Linear mixing can therefore
easily be mistaken for phase locking between distinct signals. To dis-
tinguish these two conditions we need a different measure of phase
locking that is zero in the case of linear mixing but nonzero when
there is a consistent nonzero phase difference between the two sig-
nals. The Phase Lag Index (PLI) (Stam et al., 2007) achieves this goal
by quantifying the asymmetry of the distribution of relative phase
around zero and is defined as

PLI≜ E sign Δϕ tð Þð Þ½ �j j: ð5Þ

PLI takes values on the interval [0, 1] and is zero if the distribution
of relative phase is symmetric about 0 or π.

In practice PLV and PLI are typically estimated by averaging over
trials and/or time (Aviyente et al., 2010; Lachaux et al., 1999, 2000;
Mormann et al., 2000; Stam et al., 2007). For notational convenience,
we will drop the explicit dependence on t in the following. A non-
parametric estimate of PLV can be computed by approximating
Eq. (4) by averaging over trials:

PL̂Vsample≜
1
N

XN
n¼1

ejΔϕn tð Þ
�����

����� ð6Þ

where n indexes the trial number and N is the total number of trials.
The estimator generalizes in an obvious way to incorporate averaging
over multiple time samples. The corresponding nonparametric esti-
mator for PLI is

PL̂Isample≜
1
N

XN
n¼1

sign Δϕn tð Þð Þ
�����

�����: ð7Þ

In the following section we consider the relationship between
PLV and PLI and the parameters of two alternative probability
distributions that can be used to characterize phase interactions:
the von Mises and the bivariate circularly symmetric Gaussian.
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