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Through decades of research, neuroscientists and clinicians have identified an array of brain areas that each
activate when a person views a certain category of stimuli. However, we do not have a detailed understand-
ing of how the brain represents individual stimuli within a category. Here we used direct human brain re-
cordings and machine-learning algorithms to characterize the distributed patterns that distinguish specific
cognitive states. Epilepsy patients with surgically implanted electrodes performed a working-memory task
and we used machine-learning algorithms to predict the identity of each viewed stimulus. We found that
the brain's representation of stimulus-specific information is distributed across neural activity at multiple
frequencies, electrodes, and timepoints. Stimulus-specific neuronal activity was most prominent in the
high-gamma (65-128 Hz) and theta/alpha (4-16 Hz) bands, but the properties of these signals differed sig-
nificantly between individuals and for novel stimuli compared to common ones. Our findings are helpful for
understanding the neural basis of memory and developing brain-computer interfaces by showing that the
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brain distinguishes specific cognitive states by diverse spatiotemporal patterns of neuronal.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Over the last century, neuroscientists have made dramatic progress
towards understanding the patterns of human brain activity that
encode the properties of cognitive representations. Whereas early
work suggested that all memory representations are stored in a fully
distributed manner (Lashley, 1950; Pfibram, 1991), modern studies
show that the human brain has a modular organization, such that neu-
ronal activity in different regions represents separate classes of cogni-
tive information (Farah and McClelland, 1991; Mitchell et al., 2008;
Warrington and Shallice, 1984). This work has identified a number of
brain regions where large-scale neuronal activations occur when
people process specific categories of information, such as faces
(Kanwisher et al., 1997), scenes (Epstein et al., 1999), and animals
(Martin et al., 1996), among many others (Mitchell et al., 2008).

In addition to category-wide neuronal patterns, an important addi-
tional question concerns how the brain differentiates individual
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memories within a category. Although human neuroscience studies
have traditionally not focused on characterizing specific cognitive states,
there is emerging evidence that individual neuronal network states can
be probed using direct human brain recordings (Chang et al., 2010;
Jacobs and Kahana, 2009; Manning et al., 2012; Morton et al., In press;
Quian Quiroga et al.,, 2005). Here our work uses electrocorticographic
(ECoG) recordings from electrodes implanted directly on the cortical sur-
face of epilepsy patients undergoing invasive monitoring. ECoG elec-
trodes directly measure the aggregate activity of small neuronal
populations with high temporal and spatial resolutions. This makes
them useful for measuring neural correlates of specific cognitive states,
which might be represented by detailed spatiotemporal patterns of neu-
ronal activity. ECoG is further useful because it simultaneously measures
neural activity at multiple frequencies, which is important because neu-
ral oscillations at different frequencies are linked to distinct physiological
processes (Buzsaki, 2006).

Although research suggests that the brain utilizes distributed pat-
terns, most traditional neuroscience research uses univariate statistical
methods, which are incapable of fully quantifying distributed signals.
Here we instead use multivariate machine-learning algorithms, which
have recently emerged as a powerful technique for identifying and char-
acterizing distributed neural representations. Machine learning methods
have most often been used to probe brain data that were recorded non-
invasively, such as functional magnetic resonance imaging (Cox and
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Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2006; Kamitani and
Tong, 2005; Kriegeskorte and Kreiman, 2012; Norman et al., 2006), elec-
troencephalography (Murphy et al,, 2011; Simanova et al.,, 2010) and
magnetoencephalography (Chan et al,, 2011; Rieger et al., 2008). By uti-
lizing machine-learning techniques in conjunction with ECoG data, our
work aims to bring a new level of detail to our understanding of how
the brain represents individual cognitive states.

We analyzed ECoG recordings from patients performing a working-
memory task where they memorize each of the letters in a short list
(Sternberg, 1966). Previously we showed that the amplitude of ECoG
activations at 65-128 Hz at individual electrodes distinguished specific
memory items (Jacobs and Kahana, 2009). Here, we extend this work to
characterize the spectral, spatial, and temporal distribution of each
stimulus's ECoG pattern. To foreshadow our main results, we success-
fully used machine-learning algorithms to decode the identities of indi-
vidual viewed letters using patterns of neuronal activity distributed
across space, time, and frequency. This provides a successful demon-
stration of using ECoG “mind reading” to decode a person's specific
brain state. Further, we scrutinized the machine-learning model com-
puted for each patient to reveal the types of neural signals that distin-
guish individual cognitive states. Our results show that individual
stimuli are represented by ECoG signals at a range of frequencies, with
prominent contributions by signals in the theta/alpha (4-16 Hz) and
high-gamma (65-128 Hz) bands.

Methods
Patients

We analyzed data from 59 patients undergoing invasive monitoring
as treatment for drug-resistant epilepsy. Each patient performed be-
tween one and ten testing sessions. We excluded 16 patients where
we collected less than 30 trials per stimulus, leaving a total of 43 pa-
tients. Our research protocol was approved by the appropriate institu-
tional review boards at several hospitals: Thomas Jefferson University
Hospital (Philadelphia, PA), University of Pennsylvania (Philadelphia,
PA), University Clinic (Freiburg, Germany), Children's Hospital (Boston,
MA), and Brigham and Women's Hospital (Boston, MA). Informed con-
sent was obtained from patients or their guardians.

Data acquisition

In each patient, we collected ECoG recordings from 15 to 160 elec-
trodes. Electrode locations varied across patients due to the variations
in each patient's clinical needs, but there were an especially large num-
ber of electrodes in temporal cortex. Recording electrodes typically
consisted of two configurations: grid and strip electrodes, which are
placed on the surface of the neocortex, and depth electrodes, which pen-
etrate through the cortex and record from deep brain structures like the
hippocampus. Electrode locations were computed by coregistering a
postoperative computed-tomography scan with a higher-resolution
magnetic-resonance image and reported in units of Talairach coordi-
nates (Lancaster et al., 2000; Talairach and Tournoux, 1988). ECoG
activity was recorded at a sampling rate of 250-1024 Hz using Bio-
Logic, XLTek, Neurofile, Nicolet, or Nihon Kohden recording systems,
depending on the testing hospital. The recording from each electrode
was re-referenced to the average of all signals from electrodes on the
same grid, strip, or depth probe. ECoG recordings were synchronized
with the patient's task behavior via optically isolated synchronization
pulses that were measured on a spare recording channel.

Task
During each ~45-min testing session, patients participated in a

working-memory task on a bedside laptop computer (Sternberg, 1966).
In each trial of the task, patients were presented with a list of one to six

letters. During this presentation portion of the trial, first a fixation cross
appeared, and then the letters were displayed sequentially on the com-
puter screen. Each letter was on screen for 700 ms, followed by
275-350 ms (uniformly distributed) of blank screen, for a total of a
975-1050 ms interstimulus interval. Patients were instructed to closely
attend to each stimulus presentation and to silently hold the identity of
each item in memory. The letter lists included only consonants to prevent
patients from using mnemonic strategies, such as treating each list as a
single pronounceable word. After the presentation of each list, the re-
sponse period began when a probe item was displayed after a ~2-s
delay. Then patients responded by pressing a key to indicate whether
the probe was present in the just-presented list or whether it was absent.
After the key press, the computer indicated whether the response was
correct, and then a new list was presented. Individual patients participat-
ed in different variations of the task, such that they viewed between 8 and
20 consonants. On average, across all sessions and trials, each patient
viewed 584 stimulus presentations. In cases when a patient participated
in multiple task sessions, we pooled data from multiple sessions together.
We were unable to measure patients' eye movements because of the lim-
itations of the hospital testing environment, but we frequently reminded
patients to fixate their gaze at the center of the laptop screen.

Data preprocessing

Because our goal was to characterize neural activity related to recog-
nizing and memorizing the currently viewed letter, the data analyses
presented here concern the presentation portion of each trial (Jacobs
and Kahana, 2009). ECoG recordings were resampled to 500 Hz to pro-
vide consistency across different recording systems. We analyzed ECoG
activity in the 0-800-ms time period after each letter presentation using
the raw ECoG waveforms (time-domain representation) and the Hilbert
envelope for different frequency bands and time windows (frequency-
domain representation). For the time domain representation, recordings
were down-sampled to 200 Hz, high-pass filtered at 5 Hz, and notch fil-
tered using a zero-phase-distortion Butterworth filter at 60 Hz (United
States) or 50 Hz (Europe) to remove power-line noise. The data were nor-
malized relative to the 200-ms baseline period before each stimulus ap-
pearance and further down-sampled to 100 Hz. For the frequency
domain representation, we separately analyzed the amplitude of the sig-
nal in the following bands: delta (2-4 Hz), theta (4-8 Hz), alpha
(8-16 Hz), beta (16-30 Hz), low gamma (30-60 Hz), and high gamma
(60-124 Hz). Amplitude measurements in each frequency band were
obtained using bandpass filtering in conjunction with the Hilbert trans-
form (Freeman, 2007). To perform this procedure, first we filtered the
raw ECoG signal in each range using a second-order Butterworth
bandpass filter. Next, we applied the Hilbert transform, which yields a
complex number, and then took the absolute value to extract the instan-
taneous amplitude. We smoothed the amplitude measurement from each
trial with a 100-ms boxcar filter to compensate for trial-to-trial jitter
(Jacobs and Kahana, 2009).

Stimulus decoding

We were interested in testing whether we could reliably decode
the identity of an individual viewed letter using simultaneous ECoG
recordings and, if so, determining the types of brain signals that rep-
resent letter-related information. The task of determining which of
many letters corresponds to a given neuronal pattern is an example
of a multi-class classification problem. We converted this task into a
series of two-class classification tasks, as these can be solved straight-
forwardly with various multivariate algorithms. Our implementation
takes as input two possible letter identities and a multichannel ECoG
recording from a patient viewing a letter in a trial of the task. The algo-
rithm “decodes” the ECoG signal and outputs a predicted letter, which
corresponds to its estimate of the letter that was most likely to be
viewed in that recording. That is, given n letters, we solved a binary
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