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Althoughmagnetic fields interactweaklywith biological tissues, at high fields, this interaction is sufficiently strong
to cause measurable shifts in the Larmor frequency among various tissue types. While measuring frequency shift
and its anisotropy has enabled NMR spectroscopy to determine structures of large molecules, MRI has not
been able to fully utilize the vast information existing in the frequency to elucidate tissue microstructure.
Using a multipole analysis of the complex MRI signal in the Fourier spectral space, we developed a fast and
high-resolution method that enables the quantification of tissue's magnetic responsewith a set of magnetic sus-
ceptibility tensors of various ranks. The Fourier spectral space, termed p-space, can be generated by applying
field gradients or equivalently by shifting the k-space data in various directions. Measuring these tensors
allows the visualization and quantification of tissue architecture. We performed 3D whole-brain multipole sus-
ceptibility tensor imaging in simulation, on intactmouse brains ex vivo and on human brains in vivo. We showed
that these multipole susceptibility tensors can be used to image orientations of ordered white matter fibers.
These experiments demonstrate that multipole tensor analysis may enable practical mapping of tissue micro-
structure in vivowithout rotating subject or magnetic field.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Magnetic fields can penetrate deep into the body since they interact
with biological molecules weakly as evidenced by the routine applica-
tion of MRI in human bodies. Because of this weak interaction, MRI
has traditionally relied on the amplitude of the nuclear magnetization
from the very beginning to generate tissue contrast (Lauterbur, 1973).
However, at high fields, interaction between magnetic field and the
orbital electrons of biomolecules may introduce a measurable per-
turbation on the resonance frequency of surrounding water protons.
This perturbation in turn reflects the molecular content and micro-
structure of the tissue. A notable example is the relative frequency
shift between gray and white matter and between layers of the
cortex which is thought to originate from variations of magnetic
susceptibility (Duyn et al., 2007; Rauscher et al., 2005). Although
frequency shift has provided a new image contrast for MRI, utilizing
this contrast to infer neural architecture and brain structural con-
nectivity remain challenging.

One potential way to fully utilize this frequency is to borrow tech-
niques from NMR spectroscopy. Indeed, measuring frequency shift has
been instrumental in NMR spectroscopy for probing molecular struc-
ture. While high-resolution NMR techniques provide a wealth of infor-
mation (de Beer et al., 1994; Otting et al., 1990; Tolman et al., 1995; van

Zijl et al., 1984), adapting those techniques to high-resolution imaging
is not yet possible. The difficulty is partially due to low sensitivity, lim-
ited scan time and vastly more complex physiological conditions en-
countered in volumetric brain imaging. Because of these difficulties,
frequency shift measured by MRI has been limited to the zero-th
order information, i.e. the mean frequency of a whole voxel (Dixon,
1984; Glover and Schneider, 1991; Haacke et al., 1995; Rauscher et al.,
2005; Weisskoff and Kiihne, 1992). Higher-order information such as
susceptibility anisotropy of dipoles and quadrupoles, if resolved,
would provide important information of sub-voxel tissue and cellular
architecture. Similar to the important role that NMR has played in
untangling molecular structure (Cavalli et al., 2007; Otting et al., 1990;
Wishart et al., 1992), imaging higher-order frequency variation could
provide a powerful tool for probing tissue microstructure such as
brain connectivity noninvasively.

The backbone of brain connectivity is composed of bundled long
projecting axons. Structurally, this connectivity backbone may be com-
pared to the backbones of macromolecules. Ordered arrangement of
atoms along the chain axis of macromolecules gives rise to an NMR
measurable anisotropic susceptibility tensor. Similarly, on the tissue
scale, the ordered arrangement of axon bundles also produces aniso-
tropic frequency (He and Yablonskiy, 2009) and susceptibility (Lee et
al., 2010; Li et al., 2012b; Liu, 2010). Although the mean susceptibility
of a voxel can be measured with a gradient echo (de Rochefort et al.,
2008; Li, 2001; Salomir et al., 2003), it does not measure the orienta-
tion dependence of the susceptibility (Li et al., 2011). To measure the
anisotropy of magnetic susceptibility, the method of susceptibility tensor
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imaging (STI) has been used (Liu, 2010). A recent study also explored the
capability of STI for tracking neuronal fibers in 3D in the mouse brain
ex vivo (Liu et al., 2012). In largefiber bundles, the orientation determined
by STI was found to be comparable to that by diffusion tensor imaging
(DTI) of diffusion anisotropy (Basser et al., 1994, 2000; Moseley et al.,
1990). However, this experimental procedure of STI requires rotating
the object or themagneticfield. The requirement is clearly not convenient
or even impractical for routine brain imaging on standardMRI scanners in
vivo.

Here, we developed a method to measure higher-order frequency
variations based on a single image acquisition without rotating the ob-
ject or themagnet. This method utilized a multipole analysis of the MRI
signal in a sub-voxel Fourier spectral space termed “p-space” for short.
By sampling the p-spacewith pulsed field gradients or by shifted image
reconstruction, wewere able tomeasure a set of dipole and quadrupole
susceptibility tensors.We illustrated themethodology in a simulation of
aligned axons and demonstrated its use for 3D high-resolution imaging
ofmouse brains ex vivo at 9.4 Tesla and human brains in vivo at 3.0 Tesla.
We anticipate that thep-space approachmay provide a powerfulmethod
for studying tissue microstructure and brain connectivity in vivo and
non-invasively.

Methods

The spectral space (p-space) of microscopic magnetic field

For a given imaging voxel containing heterogeneous structures,
magnetic field within the voxel is also heterogeneous due to the inter-
action between tissue and external field. The total magnetization of
the voxel is an integral of all spins within the voxel, each experiencing
a slightly different local magnetic field. The phase angle of the resulting
integral represents the amplitude of the mean field. The spatial hetero-
geneity, however, is lost during the ensemble averaging. If the field
distribution within the voxel can be recovered, it will allow us to infer
the underlying tissue microstructure.

One way to recover the field distribution is to apply an external
magnetic field gradient which will modulate the resonance frequency
of the spins within the voxel. Specifically, given a voxel of width [v1,
v2, v3] centered at location r in the laboratory's frame of reference,
the field distribution within the voxel can be denoted as B(r+x).
Here, x is the coordinate of a spin in the voxel's frame of reference
whose origin is at the center of the voxel. Both r and x are normalized
by the width of the voxel, thus dimensionless. In the presence of a
pulsed field-gradient G, the voxel-averaged MRI signal s(r) at time t,
ignoring T2-relaxation, is given by

s rð Þ ¼ ∫
x
ρ rþ xð Þe

−iγ B3 rþxð Þþ
X3
j¼1

Gj⋅ rj þ xj
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dx ð1Þ

Here, i is the imaginary number and the index j represents the
three axes of a Cartesian coordinate system with (1, 2, 3) correspond-
ing to (x, y, z) respectively. B3(r+x) is the z-component of B(r+x)
which is along the direction of the B0 field; ρ(r) is the spin density
at position r and γ is the gyromagnetic ratio. Eq. (1) can be rewritten
as

s rð Þ ¼ e−i2πp⋅r∫
x
ρ xð Þe−iγB3 xð Þte−i2πp⋅xdx ð2Þ

where p is a dimensionless spatial frequency vector with pj=γGjvjt/
2π. The symbol r has been dropped from the integral with the under-
standing that both ρ and B3 are expressed in the voxel's coordinate
system. In other words, the magnetization is proportional to the
Fourier spectrum of the complex magnetization distribution function.

Herein, this spectral space will be referred to as the p-space to differ-
entiate it from the k-space that is commonly used in image acquisi-
tion. The Fourier integral in Eq. (2) can be separated into magnitude
m(r,p) and phase Φ(r,p) as

s rð Þ ¼ e−i2πp⋅rm r;pð Þe−iΦ r;pð Þ ð3Þ

Both the magnitude and the phase are expected to depend on the
applied field gradient. Notice that if the voxel is an ideal delta function,
i.e.ρ xð Þe−iγB3 xð Þt ¼ δ xð Þ, then the integral in Eq. (2) will be always equal
to 1 regardless of the p-vector. In this extreme case, no additional infor-
mation can be gained by applying field gradients. In reality, however, all
imaging voxels have a finite dimension with a distributed magnetiza-
tion. Sampling the p-space will thus allow us to probe sub-voxel mag-
netization and magnetic field distribution.

Multipole susceptibility tensors in the p-space

In a second-ordermultipole expansion (Jackson, 1975) (or Taylor's ex-
pansion in Cartesian coordinates) (Appendix A),Φ(r,p) can be written as

Φ pð Þ ¼ Φ0 þ γB0t p̂
Tχdp̂pþ γB0t p̂

Tχqp̂p2 ð4Þ

In Eq. (4), the first term is the mean phase. The second term is a di-
pole moment in which χd is a rank-2 dipole susceptibility tensor and p̂
is the unit directional vector. The third term is a quadrupole moment
expressed in terms of a rank-2 quadrupole susceptibility tensor χq.
More specifically, Φ0 is the phase when no gradient is applied and it is
related to the image-space dipole susceptibility tensor (rank 2)χ(r) fol-
lowing (Liu, 2010)

Φ0 ¼ γt FT−1 1
3
B̂
0
FT χf gB0−k3

kTFT χf gB0

k2

( )
ð5Þ

Here, B̂0 is a unit directional vector (dimensionless). The quadrupole
tensor χq, in its complete form, is a rank-3 tensor (Jackson, 1975).
However, since B0 is in the z-direction, the third dimension of χq is
locked to the z-direction, thus reducing it to a rank-2 tensor.

Similarly, the magnitude can be expanded as

m pð Þ ¼ m0 1þ γB0t p̂
Tηdp̂pþ γB0t p̂

Tηqp̂p2
� �

ð6Þ

where both ηd and ηq are dimensionless rank-2 tensors. Given a set of
p-vectors, Eqs. (4) and (6) can be used to determine the multipole
tensors.

Measuring p-space susceptibility tensors

Tomeasure p-space multipole tensors, a standard gradient-echo se-
quence could be used with an added spectral sensitizing gradient
(Fig. 1a). The spectrum-sensitizing gradient induces a shift in the
k-space. Utilizing this shifting effect, we achieved spectral weighting
during image reconstruction by simply shifting the k-space data with
the desired p-vector. This strategy allowed the sampling of the
p-spacewithout applying physical gradients. By shifting the reconstruc-
tionwindow in various directions andwith various distances, a series of
images can be reconstructed (Fig. 1b). For each shift in the p-space, a
linear phase term is also added to the image as described in Eq. (2).
This linear phase must be removed before calculating the phase spec-
trum (Fig. 1b).

The p-space can be sampled in many different ways. If it is sampled
on a spherical surface with a constant radius of p, the susceptibility
tensors can be calculated by inverting the resulting system of linear
equations defined by Eqs. (4) and (6). Alternatively, the p-space can
be sampled continuously along a given direction, thus allowing the
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