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The use of magnetoencephalography (MEG) to assess long range functional connectivity across large scale
distributed brain networks is gaining popularity. Recent work has shown that electrodynamic networks can
be assessed using both seed based correlation or independent component analysis (ICA) applied to MEG
data and further that such metrics agree with fMRI studies. To date, techniques for MEG connectivity assess-
ment have typically used a variance normalised approach, either through the use of Pearson correlation coef-
ficients or via variance normalisation of envelope timecourses prior to ICA. Here, we show that the use of
variance information (i.e. data that have not been variance normalised) in source space projected Hilbert
envelope time series yields important spatial information, and is of significant functional relevance. Further,
we show that employing this information in functional connectivity analyses improves the spatial delineation
of network nodes using both seed based and ICA approaches. The use of variance is particularly important in
MEG since the non-independence of source space voxels (brought about by the ill-posed MEG inverse prob-
lem) means that spurious signals can exist in areas of low signal variance. We therefore suggest that this
approach be incorporated into future studies.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Introduction

Neuroimaging metrics of ‘functional connectivity’, defined as statis-
tical interdependencies between signals from spatially separate brain
regions, can be used to identify and characterise networks of communi-
cation in the human brain (e.g. Beckmann et al., 2005). Functional
magnetic resonance imaging (fMRI) has been predominantly used to
facilitate suchmeasures; however fMRI is confounded since itmeasures
a compound effect dependant on many haemodynamic parameters
including blood flow, blood volume and oxygen metabolism. To avoid
such confounds the use of electrophysiological recordings such as elec-
troencephalography (EEG) or magnetoencephalography (MEG), which
provide more direct measures of neural activity, are attractive as they
bypass the haemodynamic response and measure electrophysiological
manifestations of connectivity. Furthermore, unlike fMRI they have suf-
ficient time resolution to measure connectivity on the millisecond time
scale relevant to brain function. Recent work (Brookes et al., 2011a,
2011b; de Pasquale et al., 2010; Hipp et al., 2012; Liu et al., 2010;
Luckhoo et al., 2012) has shown that a number of networks commonly
observed using fMRI, including those associated with sensory action

(e.g. sensorimotor network) and those associated with cognitive pro-
cessing (e.g. the dorsal attention network), can also be observed in
MEG data via assessment of neural oscillations.

Methods for analysis of functional connectivity in MEG data have
been proposed based upon seed based correlation (Brookes et al.,
2011a; Hipp et al., 2012). In these studies, MEG data are frequency fil-
tered to a band of interest (alpha, beta etc.) and projected from sensor
space to brain space using an inverse projection algorithm (e.g.
Beamforming or MinimumNorm). Source space data, which are dom-
inated by neural oscillations, are then Hilbert transformed and the
amplitude envelope of the oscillatory signal calculated. A seed loca-
tion is chosen based on some a-priori assumption, and the envelope
signal from that location correlated with equivalent envelope signals
for all other brain voxels in order to find areas of maximal temporal
correlation. Areas showing high correlation are taken as exhibiting
‘functional connectivity’ with the seed location. The Pearson correla-
tion coefficient most often employed in these techniques is derived
as a normalised measure of covariance. This ensures that any variance
difference between signals does not affect the metric of temporal cou-
pling between them. However, this also means that if useful spatially
specific variance information exists within the Hilbert envelope then
this information is lost in the computation.

Anothermeans to assess distributed networks inMEG is via indepen-
dent component analysis (ICA). Recent work (Brookes et al., 2011b;

NeuroImage 67 (2013) 203–212

⁎ Corresponding author.
E-mail address: matthew.brookes@nottingham.ac.uk (M.J. Brookes).

1053-8119/$ – see front matter. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2012.11.011

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2012.11.011
mailto:matthew.brookes@nottingham.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2012.11.011
http://www.sciencedirect.com/science/journal/10538119


Luckhoo et al., 2012) has showed that temporal ICA, applied to Hilbert
envelopes, extracts temporally independent signals whose associated
spatial maps depict networks of brain regions that are spatially similar
to those identified via fMRI. Further, in agreementwith fMRI, similar net-
works are observed in resting (Brookes et al., 2011b) and task positive
(Brookes et al., 2012a; Luckhoo et al., 2012) MEG data. In a number of
ICA implementations (Brookes et al., 2011b, 2012a), Hilbert envelope
timecourses have been normalised within each voxel; again removing
variance information. In this way it is possible to ensure that 1) noise
variance, which becomes artifactually large close to the centre of the
head, does not dominate the variance of genuine cortical sources and
2) a single subject does not dominate group data. This normalisation
makes temporal ICA similar to Pearson correlation in terms of its variance
independence. However, this again means that spatially specific variance
information existing within the Hilbert envelope is not employed in the
network spatial characterisation.

In this technical note, we first investigate spatially specific variance
information that exists in beamformer projected MEG Hilbert envelope
data. We examine the spatio-spectral distribution of envelope variance,
showing that, whilst at low frequencies variance is approximately evenly
distributed across the cortex, at higher frequencies, functionally relevant
spatial information exists. For seed based functional connectivitymetrics
we present a simple but useful mathematical analysis showing direct
equivalence between correlation or covariance, and the linear regression
parameter (effect size) for normalised or un-normalised data, respec-
tively. In this way, we unify seed based correlation coefficients (used
in previously published MEG connectivity work (Brookes et al., 2011a;
Luckhoo et al., 2012)) and themoreflexible linear regression framework,
for which the principles of multi-subject analysis have been well
established in fMRI (Woolrich et al., 2004). We then go on to show
how the computation of seed based covariance (as distinct from seed
based correlation) can improve spatial delineation of brain regions
acting in concert. Finally, using ICA, we show evidence that the use of
variance information improves the spatial delineation of distributed
brain networks.

Theory and methods

Data acquisition

Data from two studies, (resting state and an N-backworking mem-
ory task) are employed. Both studies have been published previously
(Brookes et al., 2011a, 2012a). All MEG data were recorded using
the third order synthetic gradiometer configuration of a 275 channel
MEG system (MISL, Coquitlam, BC, Canada) at a sampling rate of
600 Hz. The scanner is housed inside a magnetically shielded room
and a 150 Hz low pass anti-aliasing hardware filter was applied.
During data acquisition the location of the subject's head within the
MEG system was measured by energising 3 coils placed at fiducial
points on the head (nasion, left preauricular and right preauricular).
Following data acquisition, the coil positions were measured relative
to the subject's head shape using a 3D digitizer (Polhemus isotrack).
AnMPRAGE structural MR imagewas acquired using a Philips Achieva
3 TMRI system. The locations of the fiducial markers andMEG sensors
with respect to the brain anatomy were subsequently determined by
matching the digitised head surface to the head surface extracted
from the 3 T anatomical MRI.

Resting state study
7 healthy subjects took part in the resting state measurements.

Subjects were asked to lie in the scanner with their eyes open while
300 s of resting state datawere acquired. These resting statemeasure-
ments were part of a longer paradigm involving a motor task (for full
details see Brookes et al., 2011a); here we employ only the 300 s rest-
ing state data.

N-back study
Eight healthy subjects took part in the N-back measurements.

Subjects were shown a series of letters, presented centrally in the
visual field, one every 2 s with 1 s duration. Subjects were asked to
press a button if the letter on the screenmatched that shown N letters
previously. Five conditions were employed (0, 1, 2 and 3 back and
rest); for 0-back, subjects were asked to respond to an ‘X’; during
rest, subjects fixated on a central cross. A single epoch lasted 33 s;
during the first 3 s subjects were presented with instructions on
which condition was to follow; the subsequent 30 s comprised letter
presentations. The number of targets per epoch was 2, 3 or 4, with
each option occurring with equal probability. A single ‘block’ com-
prised 5 epochs in which all 5 conditions were presented in pseudo-
random order. Each subject was presented with 12 blocks making
the experiment 33 minutes in total.

Data analysis

MEG data were inspected visually and trials containing excessive
interference were removed. Data were then frequency filtered into
the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz)
and low gamma (30–50 Hz) bands using a finite impulse response
filter implemented in NUTMEG (http://nutmeg.berkeley.edu, Dalal
et al., 2004).

Beamforming, variance and envelope computation
Beamforming (Gross et al., 2001; Robinson and Vrba, 1998; Sekihara

et al., 2006; Van Drongelen et al., 1996; Van Veen et al., 1997) estimates
the electrical source strength, Q̂ θ tð Þ, at a pre-determined brain space
location and orientation (θ), and at time t, using a weighted sum of
sensor measurements thus:

Q̂ θ tð Þ ¼ wT
θm tð Þ ð1Þ

where m(t) is a vector of magnetic field measurements made at M
sensors at time t and wθ is a vector of weighting parameters tuned
to location and orientation θ. Superscript T indicates a transpose.
Weights (wθ) are derived based on minimising the variance of the
output timecourse (i.e. ε Q̂

2
θ

� �
) but with a linear constraint that var-

iance originating at θ remains (here ε denotes expectation value).
Mathematically the weights are given by:

wT
θ ¼ hT

θ Cþ μΣf g−1hθ

h i−1
hT
θ Cþ μΣf g−1 ð2Þ

where hθ is the lead field vector for location and orientation θ, C repre-
sents the data covariancematrix andΣ=η2Iwhere η2 represents an es-
timate of the white noise at eachMEG sensor (estimated as the smallest
singular value of C). I is the identity matrix and μ (here given a value of
4) is a regularisation parameter. For both resting state and N-back data,
beamformer projected timecourses were estimated for a set of locations
placed at the vertices of a regular 8 mm grid spanning the entire brain.
Lead fields were based on a dipole current model (Sarvas, 1987) and a
local-sphere head model (Huang et al., 1999). Source orientation at
each voxel was computed using a non-linear search for the maximum
projected signal to noise ratio, Z–opt,

Z–opt ¼ max
δ

wT
θCwθ

wT
θΣwθ

 !
;0∘ ≤ δ≤ 180∘

: ð3Þ

Where δ takes a value between 0 and 180° and denotes the source
orientation which was restricted to the tangential plane (computed
relative to the mean of the local spheres). The result for a single sub-
ject is a timecourse of electrical activity spanning the whole experi-
ment, sampled at 600 Hz, for every voxel in source space.
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