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This paper usesmathematical modelling and simulations to explore the dynamics that emerge in large scale cor-
tical networks, with a particular focus on the topological properties of the structural connectivity and its relation-
ship to functional connectivity. We exploit realistic anatomical connectivity matrices (from diffusion spectrum
imaging) and investigate their capacity to generate various types of resting state activity. In particular, we
study emergent patterns of activity for realistic connectivity configurations together with approximations for-
mulated in terms of neural mass or field models. We find that homogenous connectivity matrices, of the sort
of assumed in certain neural field models give rise to damped spatially periodic modes, while more localised
modes reflect heterogeneous coupling topologies.When simulating resting statefluctuations under realistic con-
nectivity,wefind no evidence for a spectrum of spatially periodic patterns, evenwhen grouping together cortical
nodes into communities, using graph theory.We conclude that neural fieldmodelswith translationally invariant
connectivity may be best applied at themesoscopic scale and thatmore general models of cortical networks that
embed local neural fields, may provide appropriate models of macroscopic cortical dynamics over the whole
brain.

© 2012 Elsevier Inc. All rights reserved.

Introduction

This paper is about modelling the dynamics in large scale brain net-
works with both realistic and analytic connectivity matrices. It focuses
on the large scale structure of cortical dynamics and considers the effect
of heterogeneities in connectivity in terms of the relationship between
structural and functional connectivity (Honey et al., 2007; Zhou et al.,
2006). The study of anatomical connectivity in the human brain – in
parallel with the spatiotemporal activity of resting state networks –

has attracted significant attention during recent years, e.g. (Arieli et
al., 1996; Biswal et al., 1995; Damoiseaux et al., 2006; Smith et al.,
2009; Vincent et al., 2007). Despite the inherent structure of this activity
being well-known (engaging the posterior cingulate, precuneus, lateral
parietal and elements of the prefrontal cortex), an understanding of
how anatomical connectivity produces brain dynamics at various tem-
poral and spatial scales is only partial. This is, in part, due to the lack
of detailed biophysical data as well as computational power, both of
which have only recently become available. In the past ten years, a
wealth of data from tracing studies has revealed the complexity of ana-
tomical connections in the macaque brain, while an aim over the next
few years is to provide a full description of the connectivity of the
human brain — the “connectome” (Biswal et al., 2010; Sporns et al.,
2005).

Here, we use anatomical connectivity matrices and focus on the im-
plications that their form might have for the dynamical repertoire of
resting state activity and how this activity could be modelled. We as-
sume that anatomical connectivity will predict certain aspects of func-
tional connectivity (defined as the correlations among activity in
different parts of the brain), and the dynamics of resting state activity;
in other words, we assume that the dynamics of the resting state re-
flects some inherent aspect of anatomical connectivity. Our agenda
was to establish the sorts of dynamics that could be seen under partic-
ular forms of anatomical connectivity and to relate them formally from
basic principles.

Before detailed connectome data were available, simplifying as-
sumptions about the connectivity needed to be made to study the
network dynamics on the full brain scale. These assumptions includ-
ed the translational invariance of the connectivity commonly re-
ferred to as homogeneous (e.g. Jirsa and Kelso, 2000). In particular
for the temporal domain these assumptions proved to be powerful
(Jirsa and Haken, 1996, 1997; Robinson et al., 1997), but naturally
suffered when applied to the spatiotemporal domain. The symmetry
present in the connectivity expressed itself as a constraint imposed
upon the emergent brain dynamics. This led researchers to the pro-
posal to use tractographic data as a connectivity skeleton of network
models for the exploration of neural dynamics on the full brain scale
(Jirsa et al., 2002). Here we were interested in exploring these con-
nectivity constraints systematically. To address this, we use simula-
tions to verify theoretically motivated characterisations of resting
state dynamics and then use these characterisations to see whether
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homogeneity assumptions were justified when using realistic (DSI)
connectivity matrices.

Our theoretical analyses focus on fixed-point attractor networks,
where self-sustained oscillations are precluded (Jirsa and Ding, 2004)
and, by definition, the network dynamics depend only upon the ana-
tomical or structural connectivity matrix. This matrix allows us to ex-
press the dependence of spatiotemporal dynamics, arising from the
collective activity over the network nodes, in terms of a few sufficient
modes, which correspond to the dominant patterns of cortical activity
observed at rest. To allow for somemathematical treatment, we simpli-
fy the mean field formulation of Brunel andWang populations to a sta-
ble fixed-point attractor absorbing both effects of excitatory and
inhibitory activity. Attractor networks have been demonstrated to
show non-oscillatory instabilities for excitatory coupling with random
connection topology and constant identical time delay for all couplings
(Feng et al., 2006; Jirsa and Ding, 2004). There are currently no results
available extending this work tomultiple time delays. For our purposes,
we focus on the (sub)set of non-oscillatory solutions arising at instabil-
ities. This assumption does not exclude complex dynamics within a
population as demonstrated by Brunel and Wang (2001) who consid-
ered mean fields of populations of spiking neurons based on the
integrate-and-fire neuronalmodel. It is themean field of the population
activity that demonstrates the attractor state, which is the level of de-
scription chosen here. This result generalizes to more complex situa-
tions under certain conditions on the dispersion of neural activity and
noise (Assisi et al., 2005; Jirsa, 2007; Stefanescu and Jirsa, 2008). In
short, our focus is on fixed-point solutions of mean field formulations
of Brunel and Wang neuronal populations. Noise induced in a popula-
tion of spiking neurons will change the spiking dynamics, but the
meanfieldwill have a particular constant value as long as all other char-
acteristics stay the same and this noise is small. Jirsa and Ding showed
that inhibition is crucial in order to generate a delay-induced oscillatory
instability for the network. However, this result holds only for random
connectivity and when delay is the same across the whole network.

Our paper follows a series of studies focusing on the relationship
between the structural properties of the brain and the nature of
dynamics on brain networks. In particular, we take up the themes
motivated by a graph theoretical approach to complex systems
(Newman, 2003; Watts and Strogatz, 1998). This approach started
with the paper of Watts and Strogatz — who studied the anatomical
connectivity of Caenorhabditis elegans. Graph theory has been used
to delineate significant traits of neuroanatomical networks (He and
Evans, 2010; Stam and Reijneveld, 2007), such as their small-world
architecture and derive measures that can be associated with dys-
function (Ponten et al., 2007; Schindler et al., 2008). Furthermore,
graph theory has been used to identify plausible brain systems in a
mind-wandering state, often called a default mode network, e.g.
(Buckner et al., 2008; Raichle et al., 2001). Recent research has also fo-
cused on describing pathological brain states by associated graph theo-
retical measures, reflecting clinico-pathological processes (Bassett and
Bullmore, 2009; Guye et al., 2010) and has used neural fields to analyse
large scale cortical networks (Gray and Robinson, 2007, 2009; Gray et
al., 2009; Henderson and Robinson, 2011; Robinson et al., 2008, 2009)
and neural masses to model local sources (Jansen and Rit, 1995; Lopes
da Silva et al., 1974; Van Rotterdam et al., 1982) or construct
neurocognitive networks (Dhamala et al., 2007). We here focus on no-
tions such as community structure, to motivate similar approximations
of translational invariance (Amari, 1977; Breakspear et al., 2006;
Coombes, 2010; Deco et al., 2008; Robinson et al., 2003; Wilson and
Cowan, 1972) and consider the role of inhomogeneities in producing
endogenous brain dynamics. As pointed out by a reviewer, there is a
huge literature on the analysis and interpretation offields in the physics
literature — ranging from optics and electromagnetics to acoustics and
quantum fields. Also, it is well known that localised modes will be pro-
duced by inhomogeneities (e.g., impurities in condensed matter), and
that translation-invariant systems will have plane eigenmodes (this

goes back to Nother in the early 1900s, see e.g. Bloch, 1929). Our focus
is on heterogeneities of the sort assumed in neural field theory and
whether they have a similar effect as “matrix impurities”. For instance,
in condensed matter physics, impurities act only locally which is differ-
ent from the combination of long-range interactions and local homoge-
neous kernels we consider here.

This paper comprises three sections: in the first, we discuss the ana-
tomical data that form the basis of our investigation and introduce some
notions from graph theory that we will use to characterise inhomoge-
neities in realistic and analytic connectivity matrices. In the second,
we formulate cortical dynamics in terms of an integro-differential equa-
tion, thereby providing an analytical characterisation of resting state ac-
tivity; that is dominated by eigenmodes of the connectivity matrix. We
also consider a homogeneity approximation to the connectivity matrix;
namely, we replace a sparse connectivity matrix by translationally in-
variant coupling (modelling lateral interactions on the cortical sheet),
and provide a mathematical explanation for the emergence of damped
spatially periodic patterns. In the third section, we turn to numerical in-
vestigations and study the emergent dynamics from various connectiv-
ity configurations and exemplar matrices. We demonstrate the
relationship between graph theorymeasures of clustering and principal
eigenmodes. In addition to our focus on symmetric (undirected) con-
nectivity matrices, we also discuss the importance of asymmetries and
coherent fluctuations, such as those observed in resting state fMRI by
exploiting connectivity configurations including short range excitatory
and inhibitory effects. Finally, we used the theoretical predictions to as-
sess the adequacy of translationally invariant connectivity matrices to
explain the principal patterns of activity associated with realistic ana-
tomical connections.

Large scale brain networks

The analysis of large connectivity datasets, using graph theory, con-
siders brain networks as weighted graphs, whose nodes represent cor-
tical sources of measurable activity and whose edges correspond to
anatomical connections. Each of these edges can be associated with a
number corresponding to the weight that characterises the strength of
the relevant connection; for example, as obtained through tracing stud-
ies. These weights then form a matrix, which describes anatomical
connectivity.

Diffusion spectrum imaging matrix

Weuse an anatomical connectivitymatrix denoted by κ obtained via
diffusion spectrum imaging (DSI) and white matter tractography
(Hagmann et al., 2008). This matrix consists of N=66 nodes
representing both hemispheres of the human brain (see Fig. 1).

The matrix entries κij are the corresponding connection weights
that range from 0 to 1 (in an arbitrary scale) and are based on tract
density. The upper left and lower right quadrants represent
intrahemispheric connections. Elements of a band structure in this
matrix reflect prominent fibre-tracts connecting homologous re-
gions in the two hemispheres. Since the DSI technique yields
non-directional connections κij=κji. With each entry κij∈κ we can
associate two regions xi and xj corresponding to source and target re-
gions respectively. We will denote the space spanned by all such re-
gions byW, namelyW={∪xl}l=1

N . Thematrix κ can be represented as
a function in a two-dimensional space κ(x,y), where the variables x
and y parameterise the location of target and source regions respec-
tively, assuming, for simplicity, one-dimensional cortical manifolds.

Optimal community structure, modularity and clustering coefficient

Here, we briefly review certain notions from graph theory, used in
this paper, that have proven very useful for a quantifying brain network
topology. For the evaluation of graph theoretic quantities we used the

128 D.A. Pinotsis et al. / NeuroImage 65 (2013) 127–138



Download English Version:

https://daneshyari.com/en/article/6030015

Download Persian Version:

https://daneshyari.com/article/6030015

Daneshyari.com

https://daneshyari.com/en/article/6030015
https://daneshyari.com/article/6030015
https://daneshyari.com

