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The principles of functional specialization and integration in the resting brain are implemented in a complex
system of specialized networks that share some degree of interaction. Recent studies have identified wider
functional modules compared to previously defined networks and reported a small-world architecture of
brain activity in which central nodes balance the pressure to evolve segregated pathways with the integra-
tion of local systems. The accurate identification of such central nodes is crucial but might be challenging
for several reasons, e.g. inter-subject variability and physiological/pathological network plasticity, and recent
works reported partially inconsistent results concerning the properties of these cortical hubs. Here, we ap-
plied a whole-brain data-driven approach to extract cortical functional cores and examined their connectivity
from a resting state fMRI experiment on healthy subjects. Two main statistically significant cores, centered on
the posterior cingulate cortex and the supplementary motor area, were extracted and their functional con-
nectivity maps, thresholded at three statistical levels, revealed the presence of two complex systems. One
system is consistent with the default mode network (DMN) and gradually connects to visual regions, the
other centered on motor regions and gradually connects to more sensory-specific portions of cortex. These
two large scale networks eventually converged to regions belonging to the medial aspect of the DMN,
potentially allowing inter-network interactions.

© 2012 Elsevier Inc. All rights reserved.

Introduction

The existence of a structured pattern of neuronal activity generat-
ed in the brain in the absence of an explicit task (i.e. in the resting
state) is now a well reported phenomenon. Multiple techniques
(e.g. fMRI, MEG) showed that spontaneous, slow (b0.1 Hz) fluctua-
tions of cerebral activity are temporally coherent within widely
distributed functional networks that closely resemble those evoked
by sensory, motor, and cognitive paradigms (Biswal et al., 1997; de
Pasquale et al., 2010, 2012; Fox et al., 2007; He et al., 2008; Nir et
al., 2008). Therefore, the two fundamental properties of functional
segregation and dynamic integration (Friston, 2002), which have
characterized previous models of brain activity focusing at the local
scale, i.e. related to specific regions of interest, need now to be
integrated in a network model.

Initially, resting state networks (RSN) emerged as segregated
functional systems of highly coupled nodes (Biswal et al., 1997; Fox

et al., 2005). The existence of an internal network architecture was
later hypothesized in which distinct nodes played different functional
roles, a view that has received experimental support by structural and
functional connectivity studies (Andrews-Hanna et al., 2007; de
Pasquale et al., 2010; He et al., 2007; Iturria-Medina et al., 2008;
Tomasi and Volkow, 2010). Finally, recent studies have provided
evidence of a consistent interaction across networks over time (de
Pasquale et al., 2012; Deshpande et al., 2009, 2011). Therefore, the
two original principles of functional specialization and integration
seem to be implemented in a complex system of internally structured,
and functionally specialized, networks that share some degree of in-
teraction. Consequently, the original distinction in separate resting
state networks does not appear to be such a clear cut. As a matter of
fact, recent studies based on graph theory have shown the emergence
of wider functional modules compared to the originally identified
networks, in which components from different networks are grouped
together (e.g. motor and auditory areas; see (He et al., 2009; Meunier
et al., 2009a, 2009b)). In this context, data from different imaging mo-
dalities suggested the small-world architecture (Achard et al., 2006;
Bullmore and Sporns, 2009; Stam, 2004) as an efficient model of
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segregation and integration in the brain. According to this model,
central nodes, characterized by many local connections and a few
distant ones, serve to balance the pressure to evolve segregated
pathways with the integration of local networks by minimizing the
cost of wiring and metabolism (Bassett et al., 2006).

The accurate localization of such nodes is crucial to understanding
the brain functional architecture in healthy aging (Alalade et al.,
2011; Galvin et al., 2011; Oghabian et al., 2010; Westlye et al., 2011)
as well as in disease (Buckner et al., 2009; Greicius, 2008; Li et al.,
2011; Wu et al., 2009). In this work we adopted the term ‘core’ to iden-
tify a node characterized by a high number of connections in the whole
brain, while we used the term ‘hub’ when referring to specific graph
theory results (Guimera and Amaral, 2005; Meunier et al., 2010). The
identification of functional cores may be challenging for several rea-
sons. For example, the use of nodes obtained from independent studies
may not be the optimal choice, due to both inter-subject variability and
to the eventual presence of physiological (e.g. healthy aging) or
pathological (e.g. recovery from a brain injury) network plasticity
(Castellanos et al., 2011). Furthermore, recent studies based on graph
theory analyses have reported interesting, but partially inconsistent,
results concerning hub location. The observed discrepancies could be
ascribed either to methodological differences (see for example
(Buckner et al., 2009; Tomasi and Volkow, 2011a, 2011b)) or to the
fact that, due to the computational complexity, these studies are
typically based on a limited set of regions of interest within the brain.
To overcome these limitations, we have investigated here the
architecture of connections involving functional brain cores by using
a whole-brain data-driven approach. First, we identified cores based
on their statistically significant connections within the brain and their
reproducibility across subjects. Then, we proposed a multi-level
organization of these cores based on a statistical criterion. Finally, we
examined the spatial topography of connections involving the identi-
fied cores.

Materials and methods

Experimental setup

Twenty healthy subjects (9 women and 11 men; mean age±stan-
dard deviation: 30±10 years) provided informed written consent
and participated in this study, which was approved by the local ethics
committee. The study comprised four consecutive resting state
sessions. Subjects were told to stay still and relaxed and no particular
instructions were given to attend or fixate a particular stimulus. This
strategy was adopted to simulate the acquisition of data from patients
whose clinical conditions may not allow them to perform even basic
attentional task. More details on this are provided in the Discussion
section. The fMRI data were acquired on a 3 T Allegra scanner
(Siemens Medical Solutions, Erlangen, Germany) with a maximum
gradient strength of 40 mT/m, using a standard quadrature birdcage
head coil for both RF transmission and RF reception. The adopted
sequence was a gradient echo-EPI, with 38 axial slices with a voxel
size of 3×3×3.75 mm3 (matrix size 64×64; FOV 192×192 mm2;
TR=2470 ms) in ascending order. Each resting state session
consisted of 100 volumes. Anatomical data consisted of T1-weighted
images obtained in the sagittal plane using a modified driven equilib-
rium Fourier transform (MDEFT) (16) sequence (TE/TR=2.4 ms/
7.92 ms, flip angle=15°, voxel size=1 mm3).

fMRI pre-processing

Our pre-processing pipeline consists of several steps performed
using a combination of tools from the FMRIB's Software Library (FSL
— http://www.fmrib.ox.ac.uk/fsl) and the Physiologic Estimation by
Temporal Independent Component Analysis (PESTICA) software
(Beall, 2010).

The data are initially motion corrected using the FSL MCFLIRT tool
(Jenkinson et al., 2002). Then, physiological respiration and cardiac
artifacts were removed by means of PESTICA. This is a data-driven
estimator of cardiac and respiratory effects that uses the Infomax
algorithm with enforced temporal independence (software available
at (www.nitrc.org/plugins/mwiki/index.php/pestica:MainPage). This
approach identifies 4 cardiac and 2 respiratory time-series regressors,
based on spatial weighting maps of cardiac and respiratory effects
and manual selection of the artifact temporal power-spectrum band.
For each individual dataset, we manually estimated the spectral
peak range nearest to the suggested maxima of 17 bpm and 60 bpm
(respiratory and cardiac peaks, respectively). In the first phase
PESTICA estimators are obtained by means of a temporal slicewise
ICA decomposition of the EPI data after the co-registration to the car-
diac and respiration templates (see Fig. S1). Then, a fifth order regres-
sion is performed on the BOLD data based on the obtained estimators
(RETROICOR step). In a final refinement step (IRF-RETROICOR) a prin-
cipal component analysis (PCA) is applied to extract those regression
coefficients explaining most of the variance. The details of this ap-
proach can be found in (Beall, 2010). Once the data have been cleaned
from the physiological artifacts, the FSL-BET tool was used to estimate
a gray matter (GM) mask (Smith, 2002). Eventually, a mean-based
intensity normalization of all volumes was performed; high-pass
temporal filtering; Gaussian low-pass temporal filtering (FWHM
sigma=2.8); coregistration to the MNI152 standard space (FSL
FNIRT tool).

Identification of connectivity cores

The procedure used to identify connectivity cores is schematized
in Fig. 1. First, the adopted measure of functional connectivity was
based on the Pearson correlation coefficient computed between
BOLD time series and a cross-correlation matrix was obtained for
each subject and session including all the voxels in the estimated
gray matter mask (Nvoxel=36571 within the brain 54% of which
within the gray matter), see Fig. 1A in which the first session of a
representative subject is reported). After the PESTICA step no further
regression to remove a global mean signal was performed (as in (Fox
et al., 2005)). Typically, global signal regression is performed to
remove common fluctuations associated with nuisance variables,
e.g. respiration. However, here such fluctuations have already been
removed by PESTICA, in which the regression steps are carefully
implemented in order to maintain the signal variance as high possible
(Beall, 2010). In addition, it has been argued that the global signal re-
gression could have controversial effects on the correlation values
((Cordes et al., 2001; Guo et al., 2012; Murphy et al., 2009), see
‘Methodological concerns’ of the Discussion section).

Second, the cross-correlation matrix was Fisher transformed to ob-
tain normally distributed values. From these values, z-scores from a
N(0,1) distribution were computed by normalizing the variance and
subtracting a baseline value corresponding to the average connectivity
among all the possible pairs of voxels within the gray matter.

Third, since we assume that a candidate core shows connections
statistically stronger than the baseline value, core identification was
performed through a hypothesis test with H0: z=0. The test was
corrected for multiple comparisons using the false discovery rate
(Benjamini and Hochberg, 1995) and performed at three different
significance levels, namely α=[0.01, 0.02, 0.05]. In this way, the
obtained cores could be ranked based on the strength of their connec-
tions at each level of significance. This step was repeated for each
session and subject. In Fig. 1B we show the distribution of z and the
threshold obtained for a representative session of one subject (inset
panel-shaded red area).

Fourth, for each subject, a binary mask was generated for those
voxels passing the test at each statistical level in each session. The
resulting four masks were multiplied together (logical AND) across
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