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Intercellular glial calcium waves (GCW) constitute a signaling pathway which can be visualized by fluores-
cence imaging of cytosolic Ca2+ changes. Reliable detection of calcium waves in multiphoton imaging data
is challenging because of low signal-to-noise ratio. We modified the multiscale vision model (MVM), origi-
nally employed to detect faint objects in astronomy data to process stacks of fluorescent images. We demon-
strate that the MVM identified and characterized GCWs with much higher sensitivity and detail than pixel
thresholding. Origins of GCWs were often associated with prolonged secondary Ca2+ elevations. The GCWs
had variable shapes, and secondary GCWs were observed to bud from the primary, larger GCW. GCWs evaded
areas shortly before occupied by a preceding GCW instead circulating around the refractory area. Blood ves-
sels uniquely reshaped GCWs and were associated with secondary GCW events. We conclude that the MVM
provides unique possibilities to study spatiotemporally correlated Ca2+ signaling in brain tissue.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Astrocytes lack electrical excitability, but are well known for
chemical excitability in the form of transient rises in cytosolic calci-
um. These cells occupy a unique position in the central nervous sys-
tem (CNS), ensheathing more than 99% of blood vessels with their
endfeet processes (Iadecola and Nedergaard, 2007) and covering
from ~40 to 90% of synapses, mostly glutamatergic, in the brain and
cerebellum (reviewed e.g. in Wang and Bordey, 2008; Nimmerjahn,
2009). This placement suggests astrocytes as mediators in coupling
neuronal activity to cerebral blood flow and as moderators in regula-
tion of synaptic activity.

Calcium signaling in astrocytes can take at least two main forms:
spontaneous Ca2+ fluctuations in single astrocytes and a spatially pat-
terned spreading Ca2+ signal that pervade astroglial networks. The ear-
liest reports (Cornell-Bell and Finkbeiner, 1991; Cornell-Bell et al.,
1990) described highly concerted intercellular Ca2+ signaling in cul-
tured astrocytes that spread fromone astrocyte to another for hundreds
of micrometers away from a seeding Ca2+ sparkle. Intercellular Ca2+

waves in astrocytic syncytium can be triggered by electrical and me-
chanical stimulation (Scemes and Giaume, 2006), local elevation of ex-
tracellular ATP level (Hoogland et al., 2009) or by neuronal activity in
situ (Dani et al., 1992). Spontaneous glial calcium signaling is reported

to guide axonal growth and cell migration in the developing brain
(Hung and Colicos, 2008; Kanemaru et al., 2007; Weissman et al.,
2004) and calciumwaves may represent a reaction to local tissue dam-
age or other pathology. For instance, Ca2+ waves tend to originate near
amyloidal plaques in amousemodel of Alzheimer disease (Kuchibhotla
et al., 2009), and the incidence of spontaneous Ca2+ waves is increased
in the retina with age (Kurth-Nelson et al., 2009).

In vivo fluorescence Ca2+ imaging recordings pose challenges for
data analysis. Specifically, the problem is identifying transient low con-
trast signals in large series of images at a low signal to noise ratio (SNR).
This difficulty calls for development of standardized automated ap-
proaches for data handling. The available methods can be loosely cate-
gorized as widely employed region of interest (ROI) type analyses,
pixel thresholding, statistical component analyses and multiscale
(usually wavelet based) analyses. ROI analysis and pixel thresholding
work particularly well with evoked responses, relatively low noise
and small datasets, primarily because of their simplicity. However, it be-
comes unwieldy for analysis of sparse spontaneous events in large
datasets and high noise levels. Independent component analysis
(Mukamel et al., 2009) is capable of processing large datasets with
sparse spontaneous events, but has some limitations. Specifically, the
output of ICA relies on independence of the analyzed signals, does not
preserve the relative amplitude or the sign of the detected components,
and in application to frame series does not directly take advantage from
local correlations in pixel intensities as the images are flattened to 1D
representation prior to the procedure, because the method relies on
matrix rather than tensor manipulation. Spontaneously occurring glial
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Ca2+waves (GCWs) are often difficult to detect and quantify based on a
ROI analysis, pixel thresholding or ICA. Many approaches involve
thresholding of data at empirically defined level followed by post-
processing to segment and reconstruct detected objects based on
some heuristics.

Alternatively, wavelet-based multiscale techniques of image pro-
cessing can be used. This approach has proved successful in a number
of applications, including image de-noising (Starck and Murtagh,
2006; Starck et al., 2002), segmentation (Alzubi et al., 2011) and fusion
(Amolins et al., 2007). In the context of biomedical imaging wavelets
have been most widely used in functional magnetic resonance imaging
(fMRI) (Bullmore et al., 2004; Khullar et al., 2011; Van De Ville et al.,
2006). Broader-range wavelet-based methods in image processing
have been widely reviewed (Starck et al., 2004; Truchetet and Laligant,
2008). In short, wavelet transform is a multiscale representation of the
input data, made via iterative application of band-pass filters. Wavelet
coefficients thus capture the signal features at different locations and hi-
erarchical spatial resolutions. The multiscale property is especially
useful for unbiased noise reduction because a typical signal is concen-
trated in a few coefficients at several scales, while noise is homoge-
neously distributed and can be thus adaptively suppressed at different
scales. Existing wavelet techniques of imaging data analysis often rely
on the characteristic scale of objects of interest or on evoked nature of
responses (e.g. Azarias et al., 2008; Bathellier et al., 2007; Wegner et
al., 2006, 2007) In contrast, to work with spontaneous GCWs, we
searched for a method capable of capturing faint spontaneous events
in noisy data, which are characterized by a wide range of spatial scales
and capable of separating simultaneously occurring GCWs.

The problem of detection and reconstruction of complex-shaped
light sources in noisy data is not unique to biological imaging. An inter-
esting wavelet-based algorithm for object detection has been proposed
for analysis of astronomical images (Bijaoui and Rué, 1995; Rué and
Bijaoui, 1997). In addition to more reliable detection of significantly
bright areas by thresholding wavelet coefficients, this method intro-
duces an elegant and comprehensive way of object representation by
establishing interscale relationship of contiguous areas of significant
wavelet coefficients completed by deblending of overlapping objects of
different size based on location of local maxima of wavelet coefficients.
Because of the nature of the à trous transform used inMVM, thismethod
is optimal for detection of objects with relatively isotropic features. Be-
cause cerebellar GCWs are mediated by diffusion of extracellular medi-
ators and therefore have almost circle-symmetric shape and are
spatially and temporarily constrained, the MVM algorithm seemed to
be an optimal tool for detection and reconstruction of GCWs. According-
ly, we adapted the MVM algorithm to time-lapse fluorescent imaging
data and provide evidence that GCWs are successfully detected and re-
covered from in vivo noisy multiphoton imaging data with this method.

To illustrate our method's utility, we applied the modified MVM
framework to the study of spontaneously occurringGCWsunder resting
conditions in mouse cerebellum in vivo. Earlier (Hoogland et al., 2009)
identified spontaneous rat cerebellar GCWs as events of spreading Ca2+

elevations in astrocytic microdomains spanning typically ≈50 μm in
diameter with a mean area of ≈3500 μm2. The GCWs observed by
Hoogland et al. lasted for ≈11 s, reached maximal extent within
≈4 s and hadwavefront expansion rate≈9 μm/s at 15 μm from origin,
gradually slowing down, while the area covered by a GCW increased
approximately linear with time. ATP-evoked GCWs covered several-
fold larger areas and lasted longer. The spontaneous GCWs we were
able to identify in mice had similar characteristics to those described
by Hoogland et al. The general spatio-temporal features of the
reconstructed GCWs identified in this study are in accordance with
these values, but suggest a mechanism of wave propagation in the
astroglia that involves more complex modes in addition to simple ATP
diffusion. This inference is based on observations of secondary rebound
rises of Ca2+ at the origin of the GCWs, secondary smaller GCW events
budding from the wavefront of primary larger GCWs as well as the

evidence for a refractory period as indicated by avoidance by subse-
quent GCWs of areas involved in a preceding GCW, curving around
the borders of such areas. Finally, we describe that blood vessels repre-
sented a barrier for GCW propagation, but elicited spurts of secondary
GCWs along the vessel walls. These findings reveal basic features of
multicellular Ca2+ waves in cerebellar astrocytes and highlight the im-
pact of the multiscale vision model for analyzing fluorescence imaging
data from cerebral cortex in vivo.

Material and methods

Theory

The key idea of the MVM algorithm is to perform thresholding in
wavelet space followed by defining objects as connected structures
of contiguous areas of significant wavelet coefficients at several levels
of decomposition. Details on the MVM algorithm can be found in
Bijaoui and Rué (1995), Rué and Bijaoui (1997) and Starck and
Murtagh (2006). Here we only provide a short overview necessary
to describe its application to the task of GCW detection. The proposed
analysis scheme is illustrated in Fig. 1. We typically used 5-level de-
composition which well matched the spatial range of the observed
GCWs.

Two-dimensional (2D) discrete wavelet transform
We used the à trous transform as suggested by Bijaoui and Rue in

1995 (Bijaoui and Rué, 1995; Rué and Bijaoui, 1997). This transform
decomposes an original image I(x,y) into a set {wj(x,y)} representing
2D image details at different scales j (wavelet coefficients) and a
smoothed approximation cN(x,y) at the largest scale:

I x; yð Þ ¼ cN x; yð Þ þ∑
j
wj x; yð Þ; ð1Þ

where j=1, … N is the level of decomposition corresponding to a hi-
erarchy of spatial scales. As j increases, the coefficient images wj rep-
resent more and more coarse features of the original image I. Note
how different scales are highlighted in the coefficient images of a nor-
malized fluorescence frame with two GCWs in Fig. 1. To further illus-
trate the nature of the transform we also provide an informal
example of à trous decomposition of a simple drawing in Supplemen-
tary material.

Wavelet coefficients at consecutive levels are obtained in an itera-
tive scheme. First, original image is considered an approximation at
level 0 I(x,y)=c0(x,y). Approximations (smoothed images) at the
next level, are obtained by convolution of the previous approximation
with a low-pass filter:

cnþ1 x; yð Þ ¼ cn x; yð Þ � hnþ1; ð2Þ

and the wavelet coefficients (“details”) are defined as the difference
between the subsequent approximations:

Wnþ1 x; yð Þ ¼ Cnþ1 x; yð Þ−Cn x; yð Þ: ð3Þ

The low-pass filter is 2× zero-upsampled at each level, thus leading
to interlaced image convolution. Following (Rué and Bijaoui, 1997), we
used a discrete filter based on a cubic B-spline. In one dimension this fil-
ter takes the form h1 ¼ 1

16 ;
1
4 ;

3
8 ;

1
4 ;

1
16ð Þ. For 2D images we used the dot

product of the two one-dimensional filters h2=h1
T⋅h1.

Significant wavelet coefficients: thresholding in wavelet space
Detection of structures of interest that are significantly brighter

than the background should be based on knowledge about the statis-
tical distribution of the wavelet coefficients {wj(x,y)} in the back-
ground. In this work we assumed stationary Gaussian white noise.
Statistics of wavelet coefficients at each level were estimated with
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