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Recently, resting-state functional magnetic resonance imaging (R-fMRI) has emerged as a powerful tool for
investigating functional brain organization changes in a variety of neurological and psychiatric disorders.
However, the current techniques may need further development to better define the reference brain net-
works for quantifying the functional connectivity differences between normal and diseased subject groups.
In this study, we introduced a new clustering-based method that can clearly define the reference clusters.
By employing group difference information to guide the clustering, the voxels within the reference clusters
will have homogeneous functional connectivity changes above predefined levels. This method identified
functional clusters that were significantly different between the amnestic mild cognitively impaired (aMCI)
and age-matched cognitively normal (CN) subjects. The results indicated that the distribution of the clusters
and their functionally disconnected regions resembled the altered memory network regions previously iden-
tified in task fMRI studies. In conclusion, the new clustering method provides an advanced approach for
studying functional brain organization changes associated with brain diseases.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Recently, resting-state functional magnetic resonance imaging
(R-fMRI) has emerged as a powerful tool for investigating normal
human brain functional organization (Biswal et al., 2010; Buckner
and Vincent, 2007) and its changes in a variety of neurological and
psychiatric disorders (Chen et al., 2011; Fox and Greicius, 2010; Fox
and Raichle, 2007; Li et al., 2012; Rosen and Napadow, 2011; Xie et
al., 2011a,b). Despite these advances, extracting valuable information
hidden in the gigabytes of four dimensional images of hundreds to
thousands of subjects remains a challenge (Biswal et al., 2010; The
ADHD-200 Global Competition, 2011).

R-fMRI data analyses are commonly categorized into preproces-
sing and postprocessing steps. While numerous studies have been
conducted to optimize R-fMRI preprocessing steps (Chang and
Glover, 2009; Chen et al., 2012; Fox et al., 2009; Weissenbacher et
al., 2009), developing the optimum techniques for R-fMRI postpro-
cessing data analysis remains a challenge (for a recent review of the
procedure and limitations of the current techniques see: Margulies
et al., 2010). For example, in independent component analysis (ICA)
or conventional clustering approaches in R-fMRI studies, independent
components (ICs) or clusters identified using subject groups with

different brain statuses, are not identical (Helekar et al., 2010;
Schrouff et al., 2011; Tyszka et al., 2011). The spatial distribution
and even the total numbers of ICs or clusters are usually not exactly
matched. As a result, it is not clear how the unmatched ICs or clusters
should be chosen as reference ICs or clusters to quantify the function-
al connectivity differences. There is a way to define a single set of ref-
erence ICs or clusters, using data that combine normal and diseased
subjects. However, if a normal IC or cluster has disappeared in the dis-
eased group because of the effect of the disease, it is possible that this
IC or cluster will not be identified using the combined data. As a
result, this approach may not be sensitive in detecting functional
connectivity differences. There is a need to develop the current
techniques to better detect functional connectivity differences
between groups.

In this study, we introduced a new clustering-based method that
clearly defines the clusters to quantify the functional connectivity dif-
ferences. The new method first produces group difference informa-
tion, and then, uses the information to guide the clustering. As a
result, there only will be one set of clearly defined reference clusters
for the entire cohort. In addition, using the group difference informa-
tion to guide the clustering ensures that the voxels within the refer-
ence clusters will have homogeneous functional connectivity
changes above predefined levels.

In practice, this new method can be applied to various research
interests. The clustering can be guided by the functional connectivity
differences between healthy and diseased states, as demonstrated
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below. It also can be guided by the correlation between functional
connectivity and behavior assessments or functional connectivity im-
provement and an outcome measure responding to a treatment, etc.

Materials and methods

Subjects

Seventeen amnestic mild cognitively impaired (aMCI) and 22 cog-
nitively normal (CN) subjects were recruited through the Memory
Disorders Clinic at the Medical College of Wisconsin (MCW). The
study was conducted with MCW Institutional Review Board (IRB) ap-
proval and in compliance with Health Insurance Portability and Ac-
countability Act (HIPAA) regulations. Written informed consent was
obtained from each participant or his or her caregiver. The detailed
inclusion and exclusion criteria for the two subject groups (aMCI
and CN) have been described previously (Goveas et al., 2011; Xie et
al., 2011a). Detailed demographic information related to these sub-
jects is listed in Table 1.

Image acquisition

Imaging was performed using a whole-body 3 T Signa GE scanner
with a standard transmit–receive head coil. During the resting-state
acquisitions, no specific cognitive tasks were performed, and the
study participants were instructed to close their eyes and relax inside
the scanner. Sagittal resting-state functional MRI (fMRI) datasets of
the whole brain were obtained in 8 min with a single-shot gradient
echo-planar imaging (EPI) pulse sequence. The fMRI imaging param-
eters were: TE of 25 ms, TR of 2 s, flip angle of 90°; 36 slices were
obtained without gap; slice thickness was 4 mm with a matrix size
of 64×64 and field of view of 24×24 cm. High-resolution SPGR 3D
axial images were acquired for anatomical reference. The parameters
were: TE/TR/TI of 4/10/450 ms, flip angle of 12°, number of slices of
144, slice thickness of 1 mm, matrix size of 256×192. A pulse oxy-
meter and a respiratory belt measured physiological noise sources
to minimize the potential artifacts in the low-frequency spectrum
(Birn et al., 2006; Glover et al., 2000).

Data preprocessing

A series of preprocessing steps common to most fMRI analysis was
conducted, using Analysis of Functional NeuroImages (AFNI) software
(http://afni.nimh.nih.gov/afni/), SPM8 (Wellcome Trust, London, UK)
and Matlab (Mathworks, Natick, MA). The preprocessing allows for
T1-equilibration (removal of the first five volumes of fMRI data). It
also involves cardiac and respiratory artifacts removal (3dretroicor,
Birn et al., 2006; Glover et al., 2000); slice-acquisition-dependent
time shift correction (3dTshift); motion correction (3dvolreg);
detrending (3dDetrend); despiking (3dDespike); segmentation

(SPM8) of white matter and CSF components from each subject's
SPGR image; white matter and CSF mask creation (3dcalc and 3dfrac-
tionize); averaged white matter and CSF signal retrieval (3dROIstats);
white matter, CSF signal and motion effect removal (3dDeconvolve);
low-frequency band-pass filtering (3dFourier); and spatial normaliza-
tion (original space to Talairach space, adwarp; the anat parent data-
set in Talairach space used in adwarp was obtained using @auto_tlrc
and the SPGR image in original space). The result was the prepro-
cessed R-fMRI time courses.

Group difference information guided clustering method

Functional connectivity difference information between the aMCI
and CN groups was used to produce voxelwise clusters. The analysis
excluded motor regions and occipital cortex regions, and was applied
to the remaining 10,988 voxels of the cortical and subcortical brain
regions. The functional connectivity of each voxel pair was calculated
from the corresponding preprocessed R-fMRI time courses, using
Pearson product-moment correlation coefficient (r). The result was
a 10,988×10,988 r-matrix for each subject (Fig. 1A, left). The Fisher
transformation (m=0.5ln[(1+ r)/(1−r)], Zar, 1996), which yielded
variants of approximately normal distribution, was applied to the
individual r-matrix to generate the m-matrix. The functional connec-
tivity difference was calculated, using the m-matrices and one-
tailed two-sample t-test. Specifically, let mij(aMCI1,…,aMCIn) and
mij(CN1,…,CNn) be the (i,j)-th element of the m-matrices for aMCI
and CN subjects. A one-tailed two-sample t-test was conducted to
examine whether mij of the aMCI group was significantly less than
that of the CN group. Such a test is repeated for all elements of the
m-matrix, yielding 10,988×10,988 p-values. The one-tailed test was
employed because we only considered the reduced connectivity in
this study to demonstrate themethod. The p-values were transformed
to Z-values, using the inverse of the normal cumulative distribution
function. The result was a 10,988×10,988 Z-matrix. The Z-value was
then thresholded at Zb−1.96 (pb0.025, uncorrected for multiple
comparisons) to keep the pairs that showed reduced connectivity
when the aMCI group is compared to the CN group. Because of the
problems of executing multiple comparisons, each voxel is expected
to have a reduced connectivity to 2.5% (10,988×2.5%≈275) of voxels
by chance. To reduce computation cost and the chance of false discov-
ery, voxels with reduced connectivity to less than 275 voxels were
removed from further analysis. As a result, 4442 voxels were retained.
The retained thresholded Z-matrix is shown in Fig. 1A (right). Note
that each voxel has 4442 thresholded Z-values, corresponding to a
particular row in the Z-matrix. We call each row of 4442 thresholded
Z-values the “Z-vector.”

The hierarchical relationship of the 4442 voxels (Fig. 1B) was
obtained based on the similarity of their Z-vectors. The clustering anal-
ysis was implemented, using the functions “linkage” and “dendrogram”

in the MATLAB Statistics Toolbox. The 4442 voxels' Z-vectors were
sent to the “linkage” function as input. The “correlation” method was
used in the “linkage” function to calculate the distance (d) between
voxels. Specifically,

dij ¼ 1−rij ð1Þ

where, rij is the correlation coefficient between the Z-vectors belonging
to voxel i and voxel j. Obviously, the more similar the Z-vectors are, the
less distance voxels i and jwill have. A detailed description of the hier-
archical clustering method can be found in the reference (Friedman et
al., 2009).

Each level of the hierarchy represents a particular grouping of the
voxels into a unique cluster (Fig. 1C). To determine the functional
homogeneity of a cluster, a homogeneity index was defined:

homogeneity index ¼ min ri; i∈voxels in the clusterð Þ ð2Þ

Table 1
Demographics information.

Characteristic aMCI (n=17) CN(n=22) p Value

M SD M SD

Gender (female/male) 11/6 11/11 NS†

Age, years 75.1 6.6 75.3 7.7 NS
MMSE 27.3 1.8 29.0 1.2 b0.002
Delayed Recall 2.5 3.3 13.4 3.5 b0.0001

Note: significant differences were found in MMSE, Delayed Recall between the aMCI
and CN groups. Abbreviation: aMCI, amnesic mild cognitive impairment; CN, cognitive-
ly normal; M, mean; SD, standard deviation; MMSE, Mini-Mental State Examination;
Delayed Recall, Paragraph delayed recall of the Wechsler Memory Scale; NS, no signif-
icance. Unless otherwise indicated, data are presented as mean±SD; p values were
obtained by a two-sample two-tailed t test.

† p Value was obtained by χ2 test.
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