
Bayesian inference of structural brain networks

Max Hinne a,b,⁎, Tom Heskes a, Christian F. Beckmann b, Marcel A.J. van Gerven b

a Radboud University Nijmegen, Institute for Computing and Information Sciences, Nijmegen, The Netherlands
b Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands

a b s t r a c ta r t i c l e i n f o

Article history:
Accepted 28 September 2012
Available online 4 October 2012

Keywords:
Structural connectivity
Probabilistic tractography
Hierarchical Bayesian model

Structural brain networks are used to model white-matter connectivity between spatially segregated brain re-
gions. The presence, location and orientation of these white matter tracts can be derived using diffusion-
weighted magnetic resonance imaging in combination with probabilistic tractography. Unfortunately, as of
yet, none of the existing approaches provide an undisputed way of inferring brain networks from the streamline
distributions which tractography produces. State-of-the-art methods rely on an arbitrary threshold or, alterna-
tively, yield weighted results that are difficult to interpret. In this paper, we provide a generative model that ex-
plicitly describes how structural brain networks lead to observed streamline distributions. This allows us to draw
principled conclusions about brain networks, which we validate using simultaneously acquired resting-state
functional MRI data. Inference may be further informed by means of a prior which combines connectivity esti-
mates frommultiple subjects. Based on this prior, we obtain networks that significantly improve on the conven-
tional approach.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Human behavior ultimately arises through the interactions between
multiple brain regions that together form networks that can be charac-
terized in terms of structural, functional and effective connectivity
(Penny et al., 2006). Structural connectivity presupposes the existence
of white-matter tracts that connect spatially segregated brain regions
which constrain the functional and effective connectivity between
these regions. Hence, structural connectivity provides the scaffolding
that is required to shape neuronal dynamics. Changes in structural
brain networks have been related to various neurological disorders.
For this reason, optimal inference of structural brain networks is of
major importance in clinical neuroscience (Catani, 2007). Inference of
these networks entails two steps. First is the estimation of the white
matter tracts. The second step consists of obtaining the network that
captures which regions are connected, based on the earlier identified
fiber tracts. In this paper, we focus on the latter step.

For the first step, we use diffusion-weighted imaging (DWI),
which is a prominent way to estimate structural connectivity of
whole-brain networks in vivo. It is a variant of magnetic resonance
imaging (MRI) which measures the restricted diffusion of water

molecules, thereby providing an indirect measure of the presence
and orientation of white-matter tracts. By following the principal dif-
fusion direction in individual voxels, streamlines can be drawn that
represent the structure of fiber bundles, connecting separate regions
of gray matter. This process is known as deterministic tractography
(Chung et al., 2010; Conturo et al., 1999; Shu et al., 2011). Alternative-
ly, fibers may be estimated using probabilistic tractography (Behrens
et al., 2003, 2007; Friman et al., 2006; Jbabdi et al., 2007). This com-
prises a model for the principal diffusion direction that is then used
to sample distributions of streamlines. Ultimately, the procedure re-
sults in a measure of uncertainty about where a hypothesized connec-
tion will terminate. A benefit of the probabilistic approach is that it
explicitly takes uncertainty in the streamlining process into account.

Apart from studies focusing on particular tracts, much research
has been devoted to the derivation of macroscopic connectivity prop-
erties, that is, whole-brain structural connectivity. Several approaches
have been suggested to extract whole-brain networks from probabi-
listic tractography results (Gong et al., 2009; Hagmann et al., 2007;
Robinson et al., 2008). Unfortunately, inference of whole-brain net-
works from probabilistic tractography estimates remains somewhat
ad hoc. Typically the underlying brain network is derived by
thresholding the streamline distribution such that counts above or
below threshold are taken to reflect the presence or absence of tracts,
respectively. This approach is easy to implement but it has a number
of issues. First, the threshold is arbitrarily chosen to have a particular
value. In a substantial part of the literature, the threshold that is used
to transform the streamline distribution into a network is actually set
to zero (Chung et al., 2011; Hagmann et al., 2007, 2008; Vaessen et al.,
2010; Zalesky et al., 2010). However, probabilistic streamlining
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depends on the arbitrary number of samples that are drawn per
voxel. This implies that, as more samples are drawn, more brain re-
gions are likely to eventually become connected given a threshold
at zero. Alternatively, the number of streamlines can be interpreted
as connection weight (Bassett et al., 2011; Robinson et al., 2010;
Zalesky et al., 2010), or a relative threshold can be applied (Kaden
et al., 2007). This way, the relative differences between connections
remain respected. Unfortunately, the connection weights do not
have a straightforward (probabilistic) interpretation. Simply normal-
izing these weights does not yield a true notion of connection proba-
bility. At most, it can be regarded as the conditional probability that a
streamline ends in a particular voxel given the starting point of the
streamline. In the case of a streamline distribution with, say, half of
the streamlines starting at node A ending in node B, and the other
half ending in node C, normalized streamline counts cannot distin-
guish between one edge with an uncertain end point, or two edges
with definite end points. Finally, several graph-theoretical measures
such as characteristic path length and clustering coefficient are
ill-defined for non-binary networks.

In general, it is problematic to use thresholding since it ignores the
relative differences between streamline counts. Intuitively, one
would expect that if, say, 90% of the streamlines connect from voxel
A to voxel B, and 10% connect voxel A to voxel C, then at the least
the former has a higher probability of having a corresponding edge
in the network than the latter, but both edges are possible as well.
This is related to the burstiness phenomenon of words in document
retrieval, where the occurrence of a rare word in a document makes
its repeated occurrence more likely (Xu and Akella, 2010). Summariz-
ing, the issue with thresholding approaches is that they consider each
tract in isolation. This ignores the information that can be gained from
the possible symmetry in streamline counts, as well as from the rela-
tive differences within a streamline distribution.

Another important observation is that the mentioned approaches
do not easily support the integration of probabilistic streamlining
data with other sources of information. Data is often not collected in
isolation but rather acquired for multiple subjects, potentially using
a multitude of imaging techniques. Multi-modal data fusion is needed
in order to provide a coherent picture of brain function (Groves et al.,
2011; Horwitz and Poeppel, 2002). The integration of multi-subject
data is required for group-level inference, where the interest is in es-
timating a network that characterizes a particular population, for ex-
ample, when comparing patients with controls in a clinical setting
(Simpson et al., 2011).

In the following, we provide a Bayesian framework for the inference
of whole-brain networks from streamline distributions. In our ap-
proach, we consider the distribution of (binary) networks that are
supported by our data, instead of generating a single network based
on an arbitrary threshold. Our approach relies on defining a generative
model for whole-brain networks which extends recent work on net-
work inference in systems biology (Mukherjee and Speed, 2008) and
consists of two ingredients. First, a network prior is defined in terms
of the classical Erdős–Rényi model (Erdős and Rényi, 1960). This prior
is later extended to handle multi-subject data, capturing the notion
that different subjects' brains tend to be similar. Second, we propose a
forwardmodel based on aDirichlet compoundmultinomial distribution
which views the streamline distributions produced by probabilistic
tractography as noisy data, thus completing the generative model.

In order to validate our Bayesian framework we make use of the
often reported observation that resting-state functional connectivity
reflects structural connectivity (Damoiseaux and Greicius, 2009;
Greicius et al., 2009; Honey et al., 2009; Koch et al., 2002; Lv et al.,
2010; Park et al., 2008; Skudlarski et al., 2008). We show that struc-
tural networks that derive from our generative model informed by
the connectivity for other subjects provide a better fit to the
(in)dependencies in resting-state functional MRI (rs-fMRI) data
than the standard thresholding approach.

Material and methods

Data acquisition

Twenty healthy volunteers were scanned after giving informed
written consent in accordance with the guidelines of the local ethics
committee. A T1 structural scan, resting-state functional data and
diffusion-weighted images were obtained using a Siemens Magnetom
Trio 3 T system at the Donders Centre for Cognitive Neuroimaging,
Radboud University Nijmegen, The Netherlands. The rs-fMRI data
were acquired at 3 Tesla using a multi echo-echo planar imaging
(ME-EPI) sequence (voxel size 3.5 mm isotropic, matrix size 64×64,
TR=2000 ms, TEs=6.9, 16.2, 25, 35 and 45 ms, 39 slices, GRAPPA
factor 3, 6/8 partial Fourier). A total of 1030 volumes were obtained.
An optimized acquisition order described by Cook et al. (2006) was
used in the DWI protocol (voxel size 2.0 mm isotropic, matrix size
110×110, TR=13,000 ms, TE=101 ms, 70 slices, 256 directions at
b=1500 s/mm2 and 24 directions at b=0).

Preprocessing of resting-state data

Themulti-echo images obtained using the rs-fMRI acquisition pro-
tocol were combined using a custom Matlab script (MATLAB 7.7, The
MathWorks Inc., Natick, MA, USA) which implements the procedure
described by Poser et al. (2006) and also incorporates motion correc-
tion using functions from the SPM5 software package (Wellcome De-
partment of Imaging Neuroscience, University College London, UK).
Of the 1030 combined volumes, the first six were discarded to allow
the system to reach a steady state. Tools from the Oxford FMRIB Soft-
ware Library (FSL, FMRIB, Oxford, UK) were used for further process-
ing. Brain extraction was performed using FSL BET (Smith, 2002). For
each subject, probabilistic brain tissue maps were obtained using FSL
FAST (Zhang et al., 2001). A zero-lag 6th order Butterworth bandpass
filter was applied to the functional data to retain only frequencies be-
tween 0.01 and 0.08 Hz. After preprocessing, the fMRI data were
parcellated according to the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). Regions without voxels with
gray-matter probability≥0.5 were discarded. This resulted in an av-
erage region count of 115±0.1. For these regions the functional
data was summed and then standardized to have zero mean and
unit standard deviation. The resulting data were used to compute
the empirical covariance matrix Σ̂. Example covariance matrices are
shown in Fig. 1a.

Preprocessing of diffusion imaging data

The preprocessing steps for the diffusion datawere conducted using
FSL FDT (Behrens et al., 2003) and consisted of correction for eddy cur-
rents and estimation of the diffusion parameters. Raw color-coded frac-
tional anisotropy maps are shown in Fig. 1b. To obtain a measure of
white-matter connectivity, we used FDT Probtrackx 2.0 (Behrens et
al., 2003, 2007). As seed voxels for tractography we used those voxels
that live on the boundary between white matter and gray matter. For
each of these voxels 5000 streamlines were drawn, with a maximum
length of 2000 steps. The streamlines were restricted by the fractional
anisotropy to prevent them from wandering around in gray matter.
Streamlines inwhich a sharp angle (>80°) occurred or that had a length
less than 2 mmwere discarded. The output thus obtained is a matrix N
with nij the number of streamlines drawn from voxel i to voxel j. To
transform this into the parcellated scheme as dictated by the AAL
atlas, the streamlineswere summed over all voxels per region, resulting
in an aggregated connectivity matrix which ranges over regions instead
of voxels. Regions that had been removed after preprocessing the fMRI
data were removed from the aggregated connectivity matrix as well.
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