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This paper presents a dynamic causal model based upon neural field models of the Amari type. We consider
the application of these models to non-invasive data, with a special focus on the mapping from source activity
on the cortical surface to a single channel. We introduce a neural field model based upon the canonical mi-
crocircuit (CMC), in which neuronal populations are assigned to different cortical layers. We show that
DCM can disambiguate between alternative (neural mass and field) models of cortical activity. However,
unlike neural mass models, DCM with neural fields can address questions about neuronal microcircuitry
and lateral interactions. This is because they are equipped with interlaminar connections and horizontal
intra-laminar connections that are patchy in nature. These horizontal or lateral connections can be regarded
as connecting macrocolumns with similar feature selectivity. Crucially, the spatial parameters governing hor-
izontal connectivity determine the separation (width) of cortical macrocolumns. Thus we can estimate the
width of macro columns, using non-invasive electromagnetic signals. We illustrate this estimation using dy-
namic causal models of steady-state or ongoing spectral activity measured using magnetoencephalography
(MEG) in human visual cortex. Specifically, we revisit the hypothesis that the size of a macrocolumn is a
key determinant of neuronal dynamics, particularly the peak gamma frequency. We are able to show a
correlation, over subjects, between columnar size and peak gamma frequency — that fits comfortably with
established correlations between peak gamma frequency and the size of visual cortex defined retinotopically.
We also considered cortical excitability and assessed its relative influence on observed gamma activity. This
example highlights the potential utility of dynamic causal modelling and neural fields in providing quantita-
tive characterisations of spatially extended dynamics on the cortical surface — that are parameterised in
terms of horizontal connections, implicit in the cortical micro-architecture and its synaptic parameters.

© 2012 Elsevier Inc. All rights reserved.

Introduction

This work combines neural field models— thatmodel the activity of
layers of cells in cortical patches — with a Bayesian framework for
optimising model parameters — known as Dynamic Causal Modelling
(DCM). This combination allows one to address questions about lateral
cortical interactions in terms of optimal models and model parameters.
DCM has been applied extensively to fMRI and electrophysiological
data (David et al., 2006; Friston et al., 2003; Penny et al., 2004) and
has been used recently to model spatiotemporal dynamics on the cor-
tical surface (Pinotsis et al., 2012). Combining generative models with
Bayesian optimisation techniques enables one to characterise the
functional architectures that generate empirical data. In this paper, we
show that DCM can disambiguate between alternative spatiotemporal
models of cortical activity — using Bayesian model comparison — and
furnish quantitative explanations of observed responses, in terms of
the biophysical properties of lateral cortical connections. This work fo-
cuses on two classes of biophysical models describing mesoscale brain

activity: neural mass and field models. Neural field models describe
how hidden neuronal states (such as the average depolarisation of a
neural population or layer) evolve over both space and time. In
contrast, neural mass models only characterise dynamics over time,
under the assumption that all the neurons of a particular population
are located at (approximately) the same point.

In previous work (Pinotsis et al., 2012), we considered the rela-
tionship between neural mass and field models and showed that
field models can be reduced to neural masses by applying shrinkage
priors to spike propagation times — such that lateral interactions
were effectively instantaneous. We introduced a DCM that provides
an explicit model of spatially extended cortical activity that allows
one to make inferences about key parameters controlling the topo-
graphic distribution of cortical activity using LFP data, like the extent
of lateral cortical connections and the conduction velocity of spike
propagation. We were able to show that including spatial parameters
enables one to explain effects that other models — such as neural
mass models — attribute to variations in temporal parameters, like
synaptic rate constants. Dynamic causal models based on neural fields
enable one to characterise the propagation of activity on the cortex
and provide a formal understanding of the mechanisms generating
spatiotemporal responses. In our previous work above, we considered
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model optimisation under the assumption that one could measure local
signals (local field potentials) that are sensitive to all spatial frequencies.
In this paper, we consider neural field models of non-invasive (EEG or
MEG) data. This development allows one to make inferences about
the nature of lateral interactions in cortical sources, without spatially
resolved measurements.

Spectral responses of neural fields

The characterisation of electrophysiological signals depends upon
models of how they are generated in source space and how the
resulting (hidden) neuronal states are detected by sensors. At the
source level we consider a model based upon a canonical microcircuit
that allows one to separate the sources of forward and backward con-
nections in cortical hierarchies. In terms of the mapping from source
to sensor space — we use a conventional lead field formulation that
is expanded in terms of spatial basis functions. As in previous work,
we focus on the modelling of power spectra. There is a long history
of modelling steady-state (or ongoing) activity spectra, associated
with neural fields, usually in models of the whole cortex, e.g., (Jirsa,
2009). Robinson (2006)has developed a neurophysiologically grounded
model of corticothalamic activity, which reproduces many properties of
empirical EEG signals; such as the spectral peaks seen in various sleep
states and seizure activity. Technically, the spectra summarising the
response of cortical sources canbe defined in termsof transfer functions,
mapping endogenous neuronal fluctuations to observed responses
(Freeman, 1972; Nunez, 1995; Robinson et al., 2001; Robinson et
al., 2003). In Pinotsis and Friston (2011), we derived the transfer
function — and an expression for the spectral responses— for a source
described by a classical neural field equation, while in Pinotsis et al.
(2012) we extended our approach to a cortical source that comprises
multiple layers. This allowed us tomodel the spectral activity of cortical
fields asmeasured on the cortical surface. Here, we pursue a similar ap-
proach and generate the corresponding spectral responses, asmeasured
by non-invasive sensors. These predictions are generated in an efficient
manner that exploits the nature of themapping from sources to sensors
in EEG and MEG.

The resulting scheme can be regarded as inverting or fitting popula-
tion models of the Amari type, using real data and Bayesian model
inversion. Previous work in a similar vein includes the use of Kalman
filters to develop estimation schemes for both neural mass (Riera et
al., 2007; Valdes et al., 1999) and neural field models of a single
population (Galka et al., 2008; Schiff and Sauer, 2008). In a related ap-
proach, Daunizeau et al. (2009)) replaced the standard dipole source—
used in neural mass models — with the principal Fourier mode of a
neural field, for the particular case of exponentially decaying synaptic
density over the cortical surface. Finally (Markounikau et al. (2010)
used a combination of linear and nonlinear optimisation methods to
invert a two-layered neural field model of voltage-sensitive dye data,
describing inhibitory and excitatory populations (without conduction
delays). The neural field model considered here has four layers and is
based on canonical cortical microcircuitry that accounts for several as-
pects of local cortical computations in theoretical neurobiology. This
model provides an extension of the well known Jansen and Rit neural
mass model and incorporates conduction delays associated with the
propagation of neuronal spikes.

Lateral interactions and neural fields

Modelling lateral interactions with neural field models has a long
history. Pioneering work was introduced in papers by Amari, Wilson
and Cowan, Grossberg and colleagues (Amari and Arbib, 1977;
Amari and Takeuchi, 1978; Grossberg and Levine, 1975; Wilson and
Cowan, 1973). These developments can be traced back to the work of
physicists in the 19th century — such as Helmholtz and Mach — on
visual perception. The first neural field models considered spontaneous

pattern formation, by analysing the steady-state behaviour of underly-
ing field equations: for example, Wilson and Cowan developed a treat-
ment of Turing instabilities in the context of neural fields (Wilson and
Cowan, 1972). In a similar vein, Grossberg initiated a line of work on
shunting interactions— via nonlinearly coupled inputs— and considered
limits as the solutions approached steady state (Grossberg, 1973). At
about the same time, Amari proved that systems of neural fields typically
approach steady-state, in which some parts remain active, thus provid-
ing a metaphor for short-term memory.

From an anatomical viewpoint, the functional specialisation of vi-
sual (and auditory) cortex is reflected in its patchy or modular orga-
nisation — in which local cortical structures share common response
properties. This organisation may be mediated by a patchy distribu-
tion of horizontal intrinsic connections that can extend up to 8 mm,
linking neurons with similar receptive fields: see, e.g., Angelucci and
Bressloff (2006), Burkhalter and Bernardo, (1989), and Wallace and
Bajwa (1991). The existence of patchy connections in different cortical
areas (and species) has been established with tracer studies in man, ma-
caque and cat: Burkhalter and Bernardo (1989), Stettler et al. (2002) and
(Wallace and Bajwa (1991), respectively. It has been shown that such
connections can have profound implications for neural field dynamics:
see Baker and Cowan (2009). The precise form of such connections
may be explained by self-organisation under functional and structural
constraints; for example, minimising the length of myelinated axons to
offset the cost of transmitting action potentials (Cherniak, 1994; Wen
and Chklovskii, 2008). Generic constraints of this sort have been used
to motivate general principles of connectivity; namely, that evolution
attempts to optimise a trade-off between metabolic cost and topo-
logical complexity (Bassett et al., 2010). In short, visual and auditory
cortices can be characterised by a patchy organisation that is con-
served over the cortex and which allows for both convergence and
divergence of cortical connections. Synaptic densities can then be
approximated by isotropic distributions with an exponential decay
over the cortical surface. In this work, we use a combination of
patchy and isotropic distributions, using connectivity kernels with
non-central peaks to model sparse intrinsic connections in cortical
circuits that mediate both local and non-local interactions. In
other words, we consider models in which neurons receive signals
both from their immediate neighbours and remote populations
that share the same functional selectivity (Pinotsis and Friston,
2011). We focus on the particular problem of identifying the parame-
ters of lateral connections within a bounded cortical patch or manifold,
as measured at a distance, with an array of non-invasive (MEG or EEG)
sensors.

This paper comprises three sections. The first reviews a canonical
neural mass model based on anatomical data and theoretical con-
straints from the theory of predictive coding. The second section de-
scribes a neural field model based upon this canonical microcircuitry.
Our focus here is on equipping the resulting neuronal model with an
electromagnetic forward model to predict responses in non-invasive
sensors. In the third section, we use Bayesian model comparison to ad-
judicate between various formulations of the ensuing neural field
model (DCM) and establish its construct validity by optimising param-
eters pertaining to GABAergic concentrations, that have been shown to
correlate with the peak gamma frequency of steady-state activity
(Muthukumaraswamy et al., 2009).

A canonical model of cortical activity

This section introduces the neuronal field model used in subse-
quent sections on dynamic causal modelling. The particular neuronal
model of source activity used here is based upon a refinement of con-
ventional (convolution–based) neuronal models that explicitly model
the neuronal sources of forward and backward connections in cortical
hierarchies — these are the superficial and deep pyramidal cell
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