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We present an automatic denoising method based on the wavelet transform to obtain single trial evoked poten-
tials. Themethod is based on the inter- and intra-scale variability of thewavelet coefficients and their deviations
from baseline values. The performance of the method is tested with simulated event related potentials (ERPs)
andwith real visual and auditory ERPs. For the simulated data the presentedmethod gives a significant improve-
ment in the observation of single trial ERPs as well as in the estimation of their amplitudes and latencies, in com-
parison with a standard denoising technique (Donoho's thresholding) and in comparison with the noisy single
trials. For the real data, the proposed method largely filters the spontaneous EEG activity, thus helping the iden-
tification of single trial visual and auditory ERPs. The proposedmethod provides a simple, automatic and fast tool
that allows the study of single trial responses and their correlations with behavior.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Event related potentials (ERPs) are voltage fluctuations within the
Electroencephalogram (EEG) due to external stimulation or internal pro-
cesses. They are routinely used for clinical diagnosis, as they allow the
identification of dysfunctions along the visual, auditory and somatosen-
sory pathways (Luck, 2005; Niedermeyer and Lopes da Silva, 2004;
Regan, 1989). ERPs are also widely used in neuroscience research,
given that the amplitude, latency and localization of different peaks or
oscillatory patterns have been correlated to a large variety of sensory
and cognitive functions (Quian Quiroga, 2006). Compared to single-
neuron studies, the gold standard in neuroscience, ERPs, and EEGs in
general, give only an indirect and noisymeasure of the neuronal activity.
The large advantage of ERPs, however, is that, unlike single-cell recordings
which are rarely performed in humans (QuianQuiroga et al., 2005, 2008),
their recording involves a non-invasive procedurewith a relatively simple
setup, and therefore, they continue to be one of the preferred tools for
studying sensory and cognitive processes in human subjects.

One of the main problems in the analysis of ERP data is that the
single-trial responses have a small amplitude compared to the ongoing
EEG inwhich they are embedded. By far themost popular technique to
enhance the observation of ERPs is by averaging several repetitions of
the stimulus (Dawson, 1954; Lopes da Silva, 2004). However, the
drawback of ensemble averaging is that critical information about
trial-by-trial changes of the evoked responses is lost. In particular,
the conventional approach in the design of an ERP paradigm is to try
to avoid these single-trial fluctuations in order to get better-defined

average responses. But there are many interesting questions that are in
fact related to systematic or unsystematic trial-by-trial variations, such
as those related to the study of learning processes (Quian Quiroga et al.,
2007). Thus the need to develop algorithms to filter the background
EEG activity in order to observe the single trial evoked responses. For
this, the use ofWienerfilteringwas suggested (Walter, 1968).Wienerfil-
teringminimizes themean square estimation error of average evokedpo-
tentials and could in principle be used to denoise single trials. However, it
is a time-invariantmethod— i.e. it assumes stationary of the signal— and
it does not give optimal resultswhen dealingwith time-varying transient
signals such as ERPs (Quian Quiroga, 2000; Quian Quiroga and Garcia,
2003). For the same reason, other standard digital filters are not suitable
for the analysis of single-trial ERPs, given that ERPs are a series of waves
appearing at different times and with different frequency compositions.
To deal with the non-stationary issue, De Weerd and co-workers pro-
posed a time-varying Wiener filter, which, however, could not provide
a good reconstruction of the signal (De Weerd, 1981; De Weerd and
Kap, 1981).

Another set of algorithms to filter the single-trial ERPs use wavelets.
Thewavelet transform is a time–frequency decomposition ideally suited
for non-stationary signals (Mallat, 1999), which has been used in the
analysis of ERPs since the early 1990s (Bartnik et al., 1992; Hanrahan,
1990; Quian Quiroga et al., 2001; Thakor et al., 1993). In particular,
Bartnik et al. (1992)) proposed to use an algorithm based on a wavelet
decomposition to extract single trial auditory evoked potentials from
the ongoing EEG. This algorithmwas unsupervised, but it led to large er-
rors in the estimation of the single-trial ERPs. Following this approach, an
ad-hoc wavelet denoising technique showed optimal results for the
identification of the single trial responses (Quian Quiroga, 2000). Given
that ERPshave specific timeand frequency localizations, afterwavelet de-
composition, the idea is to reconstruct the signal but using only those
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coefficients related to the evoked responses (deleting the ones related to
the ongoing EEG). An analysis with synthetic ERP data showed that this
ad-hoc implementation improved the signal to noise ratio of the single-
trial responses as well as the estimation of their latencies and amplitudes
(Quian Quiroga and Garcia, 2003). But the main caveat of this method is
that it requires a manual selection of the stimulus-related coefficients,
using prior knowledge of the time and frequency ranges of the ERPs.
This makes this denoising procedure subjective, time consuming and
not practical for the analysis of large number of channels (given that
the selection of wavelet coefficients is not necessarily the same for the
different channels). To overcome these problems, in this study we pro-
pose an automatic denoising implementation to visualize the single trial
evoked responses. The method is based on the wavelet transform and it
introduces an automatic selection of wavelet coefficients based on the
inter- and intra-scale correlation of neighboring wavelet coefficients,
and how their values deviate from baseline. We show its performance
with synthetic ERP data, as well as with real visual and auditory ERPs.

Materials and methods

Real data

EEG recordings
Recordings were performed in an electrically shielded chamber in

10 voluntary healthy subjects (18–30 years old). Subjects were
seated comfortably in a chair and were asked to remain still and
relax while they did a visual and an auditory oddball paradigm (see
below). The EEG data was recorded continuously using 64 electrodes
placed according to the international 10-20 system, band pass filtered
between 0.1 Hz and 250 Hz and sampled at 512 Hz, using an average
reference. After the recording, the EEG signals were re-referenced to
the average of the left and right mastoids and trials that were contami-
nated with eye blinks were removed manually from each data set. For
each trial, one secondpre- and one secondpost-stimulationwere stored
for further analysis.

Visual oddball Paradigm
As in previous studies (Quian Quiroga and Schürmann, 1999), pat-

tern visual event-related potentials (VEPs) were obtained with a check-
erboard pattern (side length of checks: 50' visual angle). A sequence
with two different stimuli was presented pseudo randomly (N=250
stimuli): the frequent or non-target stimuli were a colour reversal of
checks (80% of the stimuli), while the less frequent or target stimuli
were colour reversals with a half check displacement (both horizontal
and vertical) of the pattern (20% of the stimuli). Subjects were asked
to ignore the non-target stimuli and press a key whenever they saw
the target ones. Each pattern reversal was shown for 1 sec and the
inter stimulus interval varied pseudo-randomly between 2 and 2.2 sec.
No two target stimuli appeared in succession. Subjectswere asked tofix-
ate on a small red circle in the centre of the screen during the recording
(Quian Quiroga and Schürmann, 1999; Schürmann et al., 1995).

Auditory oddball paradigm
Auditory event-related potentials (AEP) were obtained with an

oddball paradigm, using a sequence with two different tones: non-
target stimuli (80%) had a frequency 2000 Hz and target stimuli
(20%) a frequency 1000 Hz (Goodin et al., 1978). Subjects were
instructed to press a key whenever they heard the target tone and ig-
nore the non-target ones. Each stimulus was presented for 100 ms
and the inter stimulus interval varied pseudo randomly between
1.5 and 1.7 sec. As with the VEP, subjects were asked to gaze on a
small red circle in the centre of the screen during the recording to
avoid eye movements.

Synthetic data

To evaluate the performance of the proposed algorithm, as in previous
works (Quian Quiroga and Garcia, 2003), the typical ERP components
obtained with a visual oddball, the P1, N2 and P3, were simulated using
three Gaussian functions added to background EEG activity (Fig. 1). Ran-
dom fluctuations in the latency of the simulated components were intro-
duced in order to resemble the latency variability across single trials
(ranges, P1: 90–125 ms, N2: 120–155 ms and P3: 400–700 ms). The
background EEG activity was taken from the recording of one subject
with eyes open fixating on a red circle in the centre of the screen. Thirty
single trials of the noisy ERPs, 2 sec each, were generated with different
signal to noise ratios (SNR). The SNR was defined as the ratio between
the standard deviations of the simulated ERPs and the one of the back-
ground EEG activity.

The performance of the algorithm was quantified by the root
mean square error (RMS) of the denoised single-trial ERPs — i.e. the
difference between the denoised signal and the original “clean” signal
without background EEG — and was compared to the performance
obtained with the simulated ERPs (without denoising) and the one
obtained using a standard denoising implementation (Donoho, 1993)
(see next section). Moreover, given that the most important informa-
tion to be extracted from a single trial ERP analysis is typically the am-
plitude and latency of the single trial responses, we also quantified the
error in the estimation of the single trial amplitudes and latencies of
the ERPs. For this, for each peak in each single trial, a time window
around each component was chosen (P1: 55–155 ms, N2: 95–170 ms,
P3: 300–700 ms) and the maximum (or minimum) peak in the corre-
sponding window was identified. The error for each single trial ampli-
tude (latency) was defined as: e ¼ x̂i−xij jh ii, where xi is the actual
and x̂i is the estimated amplitude (latency) of the simulated ERP com-
ponent. For each SNR, the statistical difference between the different
methods was assessed with pairwise t-tests.

Wavelet denoising

Wavelet transform
The wavelet transform is the inner product of a signal with dilated

and translated versions of a wavelet function (Mallat, 1999). Given a
signal x(t) and a wavelet function ψa,b(t) the continuous wavelet
transform (CWT) is defined as:

WψX a; bð Þ ¼ x;ψa;b

D E
; ð1Þ

ψa;b ¼ aj j−1=2ψ
t−b
a

� �
; ð2Þ

where a,b∈ ℜ are the scale and translation parameters, respectively.
The translation parameter changes the location of the wavelet function,
while the scaling parameter dilates or compresses it (Grossmann and
Morlet, 1984). The correlation of the signal x(t) with the dilated
(contracted) versions of the wavelet ψa,b(t) gives the low (high) fre-
quency components. The CWT is very redundant and, without any
loss of information, it is practical to define the wavelet transform
only at discrete scales aj=2j and times bj,k=2jk, which is called
the dyadic wavelet transform (DWT). The dyadic wavelet transform
can be computed using a hierarchical and very efficient algorithm —

faster than the Fast Fourier Transform — called multiresolution de-
composition (Mallat, 1999). This algorithm successively divides the
signal into coarse approximations and details at different scales.
The end result is the decomposition of the original signal into a series
of detail scales and a final approximation, corresponding to the
time-localized activity in different frequency bands.

In this study we used a 5-scale decomposition of the ERPs, obtaining
the detail levels D1 to D5 and a final approximation A5. The lower scales
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