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One of the main assumptions of the classical theory most widely used to characterize electrokinetic phenomena
is that ions behave as point-like entities.While the realization of the importance of the finite ion size goes back to
Stern, 1924, it was Bikerman who presented in 1942 the first expression for the steric interactions among ions.
Even now, this is the most often used expression, mainly due to its analytic simplicity. However, once ions are
considered to have a finite size, other consequences besides the steric interactions have to be considered. For
example, the finite closest approach distance of ions to the interface, the dielectrophoretic force acting on ions
in a non-uniform electric field, the variation of the electrolyte solution permittivity with the local ion concentra-
tion, and the corresponding Born force acting on the ions, have to be taken into account. In thiswork,we examine
these items in detail and discuss themain contributionsmade in this field. They show that even for the relatively
low surface charge and electrolyte concentration values encountered in colloidal suspension studies, corrections
to the classical theory due to ion size effects are far from negligible.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well-known that when a surface (electrode, colloidal particle,
gas bubble, porous body, liquid drop, etc.) enters in contact with an
ionic solution, it usually acquires a surface charge, which attracts coun-
terions from the solution forming a spatial charge distribution within
the fluid. Both charged layers form an electroneutral structure globally
known as electric double layer (EDL), which is responsible for many of
the properties observed in these systems. Electrokinetics is a general
term associated with the relative motion between the two charged
phases of the EDL. Thus, when the charged surface moves in one direc-
tion, the ions of the EDL in the solution undergo a net migration in
the opposite one, causing thereby the movement of the solvent [1].
The practical applications of these phenomena have become wide-
spread in a broad range of research fields such as biomaterials, biofilms,
microfluidics, electrokinetic waste remediation, membranes, nuclear
and fossil-fired power plants, adhesive and sealant science, etc. [2–4*].
This is why theoretical models for the interpretation of electrokinetic
and dielectric phenomena are a subject of great interest.

Their classical description is based on an equation system describing
the ion and solvent movement that constitutes the standard electro-
kinetic model. Combined with the appropriate boundary conditions,
it allows to model a wide range of systems: electrodes, colloidal

suspensions, etc. [1–4*]. According to the standardmodel, the suspending
medium is represented by a continuum characterized by its macroscopic
permittivity and viscosity values, while ions are treated as point charges
and their interactions are neglected.

While the classical theory is capable to provide an interpretation to
experimental data for weakly charged interfaces and low concentration
electrolyte solutions, it generally fails to predict crucial experimental
trends such as the measured charge–potential relationships at the elec-
trode surface when these conditions are not met. Moreover, in colloidal
suspensions, the electrophoretic mobility and low-frequency dielectric
increment values systematically surpass the standard model predic-
tions, surface potential values of suspended particles calculated from
mobility and conductivity increment data do not coincide with one
another, and measured electrophoretic mobility values surpass in
some cases the theoretical limit [4*,5].

These issues have been addressed over the years by many studies
that avoided some of the oversimplifying assumptions of the standard
electrokinetic model. For example, the presence of a counterion mono-
layer in contact with the interface, specific ion-interface adsorption,
anomalous surface conductivity, and finite ion size effects, were taken
into account [6,7*,8].

The importance of the representation of ions as point charges has
been investigated since Stern [6], who considered that ions, because of
their finite volume, cannot come infinitely close to the surface. This
led to a modified Gouy's theory [9] that included a dielectric layer
with finite thickness in contact with the charged interface. Ever since,
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several attempts have been proposed to include the steric repulsion
between ions in order to improve upon the classical theory. The earlier
ones concluded that the effect of interactions among ions in the solution
was negligible, except for particles with extremely high surface charge
[7*,10*], so that the ideal solution approximation was essentially correct
in almost all practical cases. Nevertheless, the interest in this subject has
increased in recent years mainly due to the advent of computers and
computational methods that allow to solve numerically the complex
equation systems involved in the consideration of interactions among
ions in the solution.

Roughly, two types of methods have been used to include steric
effects: microscopic descriptions of the system with different ap-
proximation levels [11,12] and phenomenological theories using
macroscopic differential equations to describe the average behavior
of the system [13–26]. Microscopic descriptions have the advantage
of a precise representation of the interactions responsible for the
macroscopic behavior, but only in equilibrium (out of equilibrium
studies are possible in principle but at an enormous computational
cost). On the contrary, phenomenological theories, less strict in the
description of the interactions, make it possible in practice to analyze
the system behavior both in equilibrium and perturbed by an exter-
nal field [10*,27–31].

Basically, all the phenomenological models consider that ions have
an effective ionic radius so that their local concentration cannot surpass
a finite value and introduce an activity coefficient in order to account for
both the ionic size and the steric interactions among ions. While differ-
ent expressions have been used for the activity coefficient [19,32–34],
most of the works published to date use the equation proposed by
Bikerman in 1942 [7*]. This expression takes only into account the
excluded ionic volume neglecting all other steric effects, and only
depends on the local volume fraction occupied by the ions so that it
has the same value for all the ionic species present in the solution. The
results of thismodification of the standardmodel are in good agreement
with those deduced from other theories based on Monte Carlo simula-
tions for a broad range of situations [35]. They have shown that steric
interactions are crucial for the interpretation of the equilibrium double
layer of electrodes when both the surface charge and the bulk ionic
concentration are high. For colloidal suspensions, however, where
these parameters are typically much lower, finite ion size effects
appeared at first to be almost negligible [29].

In recent years, the theoretical model was extended considering
three main aspects. The first consists in realizing that a restriction on
the ability of ions to approach one another should also imply a restric-
tion of ions to approach the surface of the particle. Taking this into ac-
count, the correction to the classical model becomes non negligible
even for weakly charged particles suspended in low concentration elec-
trolyte solutions [30*,36]. However, it is still necessary to consider effec-
tive ionic radii much larger than their hydrated values in order to fit
experimental data [10*,19*].

The second was the use of more elaborate steric interaction models
derived from hard sphere fluid theories, namely the Carnahan–Starling
equation and its extension to the case of ion types with different sizes
[37*,38*]. According to these theories, steric forces are eight times stron-
ger than predicted by the Bikerman equation in the low ionic concentra-
tion limit, which is precisely the case for colloidal suspensions.

Finally, it was realized that the existing theories actually do not
imply that ions have a finite size: they only include restrictions on
their ability to approach one another or the surface of the particle. On
the contrary, a finite size ion should have a finite volume that can no
longer be occupied by the suspending medium. The inclusion of this
aspect in the theoreticalmodel leads to an additional increase of the sur-
face potential, which has a similar magnitude as that obtained taking
only steric effects into account [39,40,41*,42,43,44*,45].

Inclusion of all the above-mentioned effects is a formidable
challenge from the computational point of view. Because of this, most
of the studies consider the system behavior in equilibrium avoiding,

furthermore, complications such as spherical symmetry, more than
two types of ions in the solution, or ion types with different sizes.
We discuss these works as well as the relatively few out of equilibrium
studies and works dealing with mixed electrolytes.

2. Theory

We consider a spherical colloidal particle of radius a that bears
a fixed surface charge density σs suspended in an infinite aqueous
electrolyte solution. The suspending medium is characterized by its ab-
solute permittivity εex, its viscosity η, and the presence ofm ionic species
with bulkmolar concentrations ci∞ (inmM), signed valences zi, diffusion
coefficients Di, and hydrated radii Ri. The finite values of these last
parameters constitute the sole difference between our treatment and
the standard electrokinetic model.

Themolar flows J
!

ið r!; tÞ, i=1, 2…,m, of the different ionic species
can be written as:

J
!

i ¼ ci v
!

i ð1Þ

where cið r!; tÞ and v!ið r!; tÞ are the corresponding local concentrations
and velocities. These flows are classically due to the existence of the
following macroscopic average forces (per mol) acting over the ions:

i) –The thermal force

F
!T

i ¼ −kTNA∇ lnci ð2Þ

where k is the Boltzmann constant, T is the temperature, and NA

is the Avogadro number.
ii) –The electric force

F
!E

i ¼ −zieNA∇Ψ ð3Þ

where e is the elementary charge, and Ψð r!; tÞ is the electric
potential.

iii) –The friction force with the fluid

F
!f

i ¼ −
v!i− v!
λi

ð4Þ

where v!ð r!; tÞ is the fluid velocity while λi are the ionic mobil-
ities, which are related to the diffusion coefficients Di by means
of the Einstein equation:

Di ¼ kTNAλi ð5Þ

If inertial effects over ions are neglected, the total force must be
equal to zero:

F
!T

i þ F
!E

i þ F
!f

i ¼ 0 ð6Þ

so that the molar flows, Eq. (1), become:

J
!

i ¼ −Dici∇μ i þ ci v
! ð7Þ

where

μ i ¼ lnci þ
zie
kT

Ψ ð8Þ

are the electrochemical potentials. Combined, Eqs. (7) and (8) consti-
tute the Nernst–Planck equation.
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